Modification of extracorporeal photopheresis technology with porphyrin precursors. Comparison between 8-methoxypsoralen and hexaminolevulinate in killing human T-cell lymphoma cell lines in vitro

2014 ◽  
Vol 1840 (9) ◽  
pp. 2702-2708 ◽  
Author(s):  
B. Čunderlíková ◽  
V. Vasovič ◽  
L.L. Randeberg ◽  
E. Christensen ◽  
T. Warloe ◽  
...  
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4637-4637
Author(s):  
Gerald G. Wulf ◽  
Anita Boehnke ◽  
Bertram Glass ◽  
Lorenz Truemper

Abstract Anti-CD45 mediated cytoreduction is an effective means for T-cell depletion in rodents and humans. In man, the CD45-specific rat monoclonal antibodies YTH24 and YTH54 are IgG2b subclass, exert a predominantly complement-dependent cytolytic activity against normal T-lymphocytes, and have been safely given to patients as part of conditioning therapies for allogeneic stem cell transplantation. The efficacy of such antibodies against human lymphoma is unknown. Therefore, we evaluated the cytolytic activity of YTH24 and YTH54 by complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), as well as by direct apoptotic and antiproliferative effects, against a panel of Hodgkin disease (HD) and non-Hodgkin lymphoma (NHL) cell lines, and against primary specimens. Significant CDC activity (>50% cytolysis) of the antibodies YTH54 and YTH24 was observed against three of five T-cell lymphoma lines, but against only one of nine B-cell lymphoma lines and none of four HD cell lines. The combination of YTH54 and YTH24 induced ADCC in all T-cell lymphoma cell lines and three primary leukemic T-cell lymphoma specimens, but were ineffective in B-cell lymphoma and HD cell lines.There were only minor effects of either antibody or the combination on lymphoma cell apoptosis or cell cycle arrest. In summary, anti-CD45 mediated CDC and ADCC via the antibodies YTH24 and YTH54 are primarily effective against lymphoma cells with T-cell phenotype, and may be an immunotherapeutic tool for the treatment of human T-cell lymphoma.


2010 ◽  
Vol 130 (8) ◽  
pp. 2110-2119 ◽  
Author(s):  
Chunlei Zhang ◽  
Baoqiang Li ◽  
Xiang Zhang ◽  
Parul Hazarika ◽  
Bharat B. Aggarwal ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2332-2332
Author(s):  
Shinsuke Suzuki ◽  
Stefan Nagel ◽  
Bjoern Schneider ◽  
Maren Kaufmann ◽  
Dorothea Anders ◽  
...  

Abstract Activating mutations and deletions affecting specific NOTCH1 protein domains have been recently shown to occur widely in T-cell neoplasia, e.g. in T-acute lymphoblastic leukemia (T-ALL). However, knowledge of NOTCH1 chromosomal alterations is largely based on a single cell line model (SUP-T1) with t(7;9)(q35;q34) in which NOTCH1 truncated at exon 24 is juxtaposed with TCRB. We describe the characterization of a novel rearrangement, t(9;14)(q34.3;q11) in two T-cell lymphoma cell lines, HD-MAR and HT-1. FISH analysis using fosmid clones and sequencing of fragments identified by long distance inverse PCR showed that in both cases t(9;14) effected tail-to-tail juxtaposition of intron 27 of NOTCH1 with TCRA genes, namely 5′-TRAV40 in HD-MAR, and intron 2 of TRAV5 in HT-1. Thus, in both cell lines t(9;14) places NOTCH1, truncated immediately 3′ of the HD-domain, under transcriptional control of TCRA. The 14q11.2 breakpoints in HD-MAR and HT-1 lie, respectively, near the proximal E-delta enhancer and amid a cryptic enhancer region represented by a cluster of T-cell specific DNase-I hypersensitive sites. Western blotting revealed prominent expression of truncated activated NOTCH1 polypeptides, ranging in size from 100 to 115 kDa in both cell lines. Antibodies recognizing ANK and TAD domains, believed essential for inducing T-ALL, detected the aberrant polypeptides. Moreover, treatment with gamma-secretase inhibitor (GSI) altered expression patterns of NOTCH1 polypeptides and induced growth inhibition due to G0/G1 cell cycle arrest in both t(9;14) cell lines, in stark contrast to GSI-resistant SUP-T1 cells wherein truncation occurs before the heterodimerization (HD) domain. (Another recently described t(7;9) cell line (CUTLL1) which is GSI-sensitive also carries a NOTCH1 breakpoint at intron 27.) The same protein species were not detectable by antibodies recognizing the transmembrane domain of NOTCH1 which requires GS for exposure suggesting nuclear access requires GS-cleavage. Immunostaining confirmed extranuclear blocking of NOTCH1 in response to GSI in HD-MAR/HT-1 but not in SUP-T1. In contrast, repression of HES1 occurred in response to GSI irrespective of NOTCH1 breakpoint location, suggesting its non-involvement in growth signaling. In addition to providing cell line models for a new NOTCH1 disease translocation, these data suggest that the sensitivities of T-cell neoplasias bearing NOTCH1 translocations may critically depend on whether 9q34 breakpoints lie upstream or downstream of the HD domain.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3937-3937 ◽  
Author(s):  
Enrica Marchi ◽  
Danielle C Bongero ◽  
Matko Kalac ◽  
Luigi Scotto ◽  
Owen A. O'Connor

Abstract Abstract 3937 CHOP and CHOP-like chemotherapy programs remain the most commonly used regimens for the treatment of peripheral T-cell lymphomas (PTCLs) despite often sub-optimal results. Histone deacetylase inhibitors (HDACIs) are epigenetic agents known to be active in T-cell lymphoma. Recently romidepsin (R) was approved for patients with relapsed or refractory CTCL. Both R and belinostat (B) are being investigated in patients with relapsed or refractory PTCL. We have previously shown that hypomethylating agents as decitabine (D) produce synergistic interactions with HDACIs in B-cell lymphomas. We investigated the in vitro and in vivo activity of D, R and B alone or in combination in different T-cell lymphoma and leukemia cell lines including CTCL (H9, HH), and T- acute lymphoblastic leukemia (T-ALL) lines resistant to gamma-secretase inhibitors (GSI) (P12, PF-382). For all cytotoxicity assays, luminescent cell viability was performed using CellTiter-Glo™ followed by acquisition on a Biotek Synergy HT. The IC50s for D, B and R were calculated using the Calcusyn software (Biosoft). Drug: drug interactions were analyzed using the calculation of the relative risk ratios (RRR) based on the GraphPad software (RRR<1 are defining synergism). Apoptosis was assessed by staining with Yo-Pro-1 and propidium iodine followed by FACSCalibur acquisition. Whole cell lysate proteins were extracted and quantified according to Bradford assay. After electrophoresis on a gradient 4–20% SDS-PAGE gels the proteins were transferred to nitrocellulose membrane. After blocking and incubation with the primary and the secondary antibodies, the chemiluminescent agent was added and the x-ray films were exposed to the membranes. The IC50s for belinostat alone at 24, 48 and 72 hours were generally in the nanomolar range: H9: 108.1nM – 35.7nM – 29.1nM; HH: 240.1nM - 67.6nM – 39.01nM; P12: 386.9nM – 99.9nM – 99.8nM; PF 382: 267.1nM – 135nM – 118.3nM. The IC50s for romidepsin alone at 24, 48 and 72 hours were generally in the low nanomolar range: H9: 5nM – 2.1nM – 2.2nM; HH: 14nM – 2.6nM - 2.5nM; P12: 6.2nM – 2.4nM – 2.1nM; PF382: 6.1nM – 1.7nM – 1.5nM. The IC50s for D alone at 72 and 96 hours were in the micromolar range: H9: 7.4uM – 3.7uM; HH: > 20 uM. In the cytotoxicity assays, the combination of D and B or R at 72 hours showed synergism in all the cell lines studied. The most representative RRRs are showed in table 1. Table 1 D 0.5 uM 1uM B (nM) RRR H9 50 0.7 0.7 70 0.6 0.6 100 0.4 0.5 PF 382 150 0.8 0.7 0.5 uM 1 uM R (nM) RRR H9 0.5 0.9 0.9 1 0.8 0.8 2 0.3 0.3 PF 382 1 0.8 0.7 1.5 0.4 0.4 2 0.1 0.1 When H9, HH, P12 and PF382 cell lines were treated with D and B or R for 72 hours, all the combination groups showed significantly more apoptosis than the single drug exposures and controls. Table 2 displays the range of apoptosis induction for B, R and D or for them used in combination and the RRR value after the analysis for the most significant data. Table 2 B D B + D RRR (% Apoptotic + Dead Cells) H9 100nM (22.9%) 500nM (17.9%) 51.5% 0.7 HH 100nM (42.9%) 1uM (46.9%) 61.3% 0.8 P 12 150nM (16%) 1uM (42.7%) 80.1% 0.4 PF 382 100nM (8.3%) 1uM (27.9%) 40.1% 0.8 R D R + D H9 2nM (22.2%) 500nM (17.9%) 63.6% 0.5 HH 2nM (80%) 1uM (46.9%) 89.7% 0.6 P 12 2nM (9.9%) 10uM (58.7%) 98% 0.03 PF 382 2nM (54.5%) 500nM (17.9%) 88.7% 0.2 Increased acetylation of H3 was observed when H9 cells were treated with R alone and synergistically increased after exposing cells to the combination of D + B and D + R. The expression of phosphorylated Stat3 was decreased after exposure of H9 cells to the combination of D and R. Additional interrogation of the effects of this epigenetic therapy on the JAK-STAT signaling pathway are now underway. An in vivo xenograft study in six to eight weeks old female SCID beige mice injected subcutaneously with 2 × 107 HH cells has also begun and will be reported. Mice were separated into different cohorts and treated with intraperitoneal injections of D or B or their combination according to the following schedules: D alone at 1.5 mg/kg on days 1, 5; B alone at 35 mg/Kg/day for 7 days. Collectively, the data suggest that the combination of a hypomethylating agent like D and a HDACI (B and R) are synergistic in in vitro models of human T-cell lymphoma, and may lead to a new platform for the treatment of these diseases. Disclosures: O'Connor: Millennium Pharmaceuticals, Inc.: Membership on an entity's Board of Directors or advisory committees, Research Funding.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13569-e13569
Author(s):  
Enrica Marchi ◽  
Matko Kalac ◽  
Danielle Bongero ◽  
Christine McIntosh ◽  
Laura K Fogli ◽  
...  

e13569 Background: CHOP and CHOP-like chemotherapy are the most used regimens for the treatment of peripheral T-cell lymphomas (PTCLs) despite sub-optimal results. Histone deacetylase inhibitors (HDACIs) have shown class activity in PTCLs. The interaction between the HDACIs (depsipeptide (R), belinostat (B), vorinostat (V) and panobinostat (P)) and a DNMT inhibitor (decitabine (D) was investigated in vitro, in vivo and at the molecular level in T-cell lymphoma and leukemia cell lines (H9, HH, P12, PF-382). Methods: For cytotoxicity assays, luminescence cell viability assay was used (CellTiter-Glo). Drug:drug interactions were analyzed with relative risk ratios (RRR) based on the GraphPad software (RRR<1 defining synergism). Apoptosis was assessed by Yo-Pro-1 and propidium iodine followed by FACSCalibur acquisition. Gene expression profiling was analyzed using Illumina Human HT-12 v4 Expression BeadChip microarrays and Gene Spring Software for the analysis. Results: The IC50s for B, R, V, P, D and 5-Azacytidine alone were assessed at 24, 48 and 72 hours. In cytotoxicity assays the combination of D plus B, R, V or P at 72 hours showed synergism in all the cell lines (RRRs 0.0007-0.9). All the cell lines were treated with D, B or R for 72 hours and all the combinations showed significantly more apoptosis than the single drug exposures and controls (RRR < 1). In vivo, HH SCID beige mice were treated i.p. for 3 cycles with the vehicle solution, D or B or their combination at increasing dose. The combination cohort showed statistically significant tumor growth inhibition compared to all the other cohorts. Gene expression analysis revealed differentially expressed genes and modulated pathways for each of the single agent treatment and the combination. The effects of the two drugs were largely different (only 39 genes modified in common). Most of the effects induced by the single agent were maintained in the combination group. Interestingly, 944 genes were modulated uniquely by the combination treatment. Conclusions: The combination of a DNMTI and HDACIs is strongly synergistic in vitro, in vivo and at the molecular level in model of T-cell lymphoma and these data will constitute the basis for a phase I-II clinical trials.


2010 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Edyta Biskup ◽  
Valentina Manfé ◽  
Maria Kamstrup ◽  
Robert Gniadecki

2014 ◽  
Vol 38 (4) ◽  
pp. 516
Author(s):  
Deyan Y. Yosifov ◽  
Kaloyan A. Kaloyanov ◽  
Margarita L. Guenova ◽  
Kamelia Prisadashka ◽  
Maria B. Balabanova ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3986-3986
Author(s):  
George A. Ward ◽  
Simone Jueliger ◽  
Martin Sims ◽  
Matthew Davis ◽  
Adam Boxall ◽  
...  

Abstract Introduction: Tolinapant is a potent, non-peptidomimetic antagonist of cIAP1, cIAP2 and XIAP. In ongoing Phase 2 trial (NCT02503423), tolinapant has shown activity against highly pre-treated peripheral and cutaneous T-cell lymphoma (Samaniego et al., Hematological Oncology, 2019). Hypomethylating agents (HMAs) have also shown clinical responses in some subsets of PTCL (Lemonnier et al., Blood, 2019). Both HMAs and IAP antagonists show immunomodulatory anti-cancer potential in pre-clinical studies. A Phase 1 clinical study investigating the combination of tolinapant and ASTX727 (oral decitabine) in AML is currently in progress (NCT04155580). Here we have undertaken a biomarker-driven approach to understand the potential for induction of immunogenic forms of cell death (ICD), such as necroptosis, by rational combination of our clinical compounds in pre-clinical models of T-cell lymphoma (TCL). Methods: On-target effects of decitabine and tolinapant were measured by analysing levels of DNMT1 and cIAP1, respectively, by Western blotting in mouse and human cell lines. Levels of key apoptosis, necroptosis or pyroptosis biomarkers were also monitored by Western blotting to provide evidence of lytic cell death contributing to a potential immune response. RIPK3- or MLKL-knockout cell lines were generated by CRISPR to demonstrate involvement of necroptosis in drug-induced cell death in a T-cell lymphoma cell line (BW5147.G.1.4) in vitro. Cell death was monitored by viability (CellTiterGlo) or real-time microscopy (IncuCyte) assays. Levels of key inflammatory mediators or DAMPS were measured in tissue culture supernatants and mouse plasma by Luminex assay (Ampersand). Results: Combined treatment of tolinapant and decitabine led to depletion of cIAP1 and DNMT1 in TCL cell lines, demonstrating on-target activity of tolinapant and decitabine, respectively. The combination of tolinapant and decitabine acted synergistically in mouse and human T-cell lymphoma cell lines to reduce viability in proliferation assays. Necroptosis was induced by decitabine or tolinapant alone in mouse TCL cell lines with robust activation of the RIPK1/RIPK3/MLKL necroptosis pathway when caspase activity was inhibited, and the combination of both agents enhanced loss of viability. Furthermore, we demonstrated decitabine treatment led to re-expression of both RIPK3 and MLKL in mouse cell lines, supporting published evidence that methylation can silence these key biomarkers (Koo et al., Cell Research, 2015; Koch et al., Neoplasia, 2021). Enhanced release of chemokine, cytokine and DAMPs was demonstrated with the combination of agents in vitro and in vivo. By removal of key necroptosis pathway components using CRISPR, we confirmed the importance of this lytic cell death pathway by demonstrating that RIPK3 -/- and MLKL -/- T-cell lymphoma (BW5147.G.1.4) cell lines had reduced necroptosis potential after treatment with tolinapant or decitabine alone or in combination; and demonstrate reduced release of inflammatory mediators in vitro. Finally, our in vivo evaluation of the combination of agents in mouse syngeneic models suggested that increased anti-tumour activity and immune-potentiating systemic biomarker modulation can be achieved with a tolerated dosing regimen of both compounds. Conclusion: These data demonstrate that decitabine enhances immunogenic cell death induced by tolinapant through the re-expression of genes in the necroptotic pathway. This finding provides strong rationale to explore this combination clinically. Disclosures Sims: Astex Pharmaceuticals: Current Employment. Davis: Astex Pharmacueticals: Current Employment. Smyth: Astex Pharmaceuticals: Current Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4187-4187 ◽  
Author(s):  
Eugenio Gaudio ◽  
Chiara Tarantelli ◽  
Alberto Arribas ◽  
Luciano Cascione ◽  
Ivo Kwee ◽  
...  

Abstract Background IMGN529 is an antibody drug conjugate (ADC) consisting of an anti-CD37 antibody with direct anti-tumor activity conjugated via a thioether linker to the cytotoxic maytansinoid antimicrotubule agent DM1. IMGN529 has shown pre-clinical (Deckert et al, Blood 2013) and clinical activity in lymphoma (Stathis et al, ASH 2014; NCT01534715). Here, we assessed the anti-tumor activity of IMGN529 on a large panel of B cell and T cell human lymphomas to identify potential biomarkers of response. Methods Fifty-four lymphoma cell lines [diffuse large B cell lymphoma (DLBCL), n.=27; mantle cell lymphoma (MCL), n.=10; anaplastic large T-cell lymphoma, n.=5; marginal zone lymphomas, n=6, others, n=6] were exposed to increasing doses of IMGN529 or to the unconjugated DM1 for 72h. Cell proliferation was measured using the MTT. Apoptosis induction was defined by at least 1.5-fold increase in caspase 3/7 signal activation with respect to controls using the Promega ApoTox-Glo Triplex Assay. CD37 surface expression was assessed by cytofluorimetry. Gene expression profiling (GEP) was done with the Illumina HumanHT-12 Expression BeadChips on untreated cell lines followed by GSEA (NES > |2|, P<0.05, FDR<0.25) and limma t-test (FC> |1.2|; P< 0.05; top 200 up and top 200 down). Results. The IMGN529 median IC50 in the 54 cell lines was 780pM (95%C.I., 263pm-11.45nM). Activity was stronger (P<0.001) in B cell lymphoma cell lines (n= 46; median IC50=450pM; 95%C.I., 150-800pM) than in T cell lymphoma cell lines (n=8; median IC50=22.5nM; 95%C.I., 14-40nM). The median IC50 for DM1 was 30pM (C.I.95%, 20-40pM) with no differences between B and T cell lymphoma origin. IMGN529 induced apoptosis in 33/54 (61%) lymphoma cell lines. Surface CD37 expression was higher in cell lines derived from B than from T cells (P< 0.0001): IMGN529 IC50 values, but not of DM1, were negatively correlated with surface CD37 expression across all cell lines (R=-0.39; P= 0.018), but not within the individual B or T cell subgroups. Among B cell lines, DLBCL cell of origin, TP53 status or the presence of BCL2 translocation did not affect the sensitivity to IMGN529, while IC50s were higher in the presence of MYC translocation (P= 0.043). No association was seen between IMGN529-induced apoptosis or the sensitivity to DM1 with DLBCL cell of origin, TP53 status or the presence of BCL2 or MYC translocations. We then compared the baseline gene expression profiling of DLBCL cell lines that were highly sensitive to IMGN529 (IC50< 800pM; "S") versus less sensitive/resistant DLBCL cell lines (IC50>10nM, "R"), separately for germinal center B cell type (GCB) (S, n=11; R, n=8) and for activated B cell like (ABC) (S, n=4; R, n=3). In both DLBCL groups, MYC targets, genes involved in unfolded protein response, glycolysis and DNA repair were enriched in transcripts more expressed in R than S cell lines. Transcripts associated with low sensitivity included CD44, VIM, ANXA2, BCL2, ANXA2P1, HSP90B1, NFKBIZ, CDK6, BIRC5 in GCB and HSPA1B, HSP90AA1, CADM1, CD86, TUBB2A, TUBG1, NOTCH1 in ABC cell lines. HEBP1, PHB, PSME3, RNU6-15, RPL13 were more expressed in both GCB and ABC R. Genes involved in PI3K/AKT/mTOR, hypoxia, INF-gamma, TNFA signaling via NFKB and in complement were more expressed in S than in R cell lines. Genes associated with sensitivity to IMGN529 comprised: CD37 (IMGN529 target), CD79A, CHI3L2, FAM117B, LPAR5, NFATC1, PTPN22, RBM38, SGPP1, SLC6A16 in both GCB and ABC cell lines; BASP1, CXCR5, BIK, LY86, TLR10, CD86, LCK, CD22, PTPN22, BCL6, PIK3IP1, CDKN2A in GCB; AFF3, PIM1, MGMT, PDE4B, NFKBIE, SYK, FOXO1in ABC. Conclusions. IMGN529 showed a very strong anti-tumoral activity in pre-clinical lymphoma models. High expression of CD37 and mostly genes involved in BCR signalling were associated with sensitivity to IMGN529. Conversely, the presence of MYC translocation, a high expression of MYC targets and of genes known to be involved in drug resistance (BCL2, BIRC5, CDK6, heat-shock proteins, annexins, proteasome and tubulin components) appeared to negatively affect the response to the ADC but also represent therapeutic targets for novel combinations to be explored. Disclosures Rossi: Gilead: Honoraria, Research Funding; Abbvie: Honoraria; Janseen: Honoraria. Sloss:Immunogen Inc: Employment.


Sign in / Sign up

Export Citation Format

Share Document