Potential biological role of laccase from the sponge Suberites domuncula as an antibacterial defense component

2015 ◽  
Vol 1850 (1) ◽  
pp. 118-128 ◽  
Author(s):  
Qiang Li ◽  
Xiaohong Wang ◽  
Michael Korzhev ◽  
Heinz C. Schröder ◽  
Thorben Link ◽  
...  
Author(s):  
Argyris Arnellos

The emphasis on the collaborative dimension of life overlooks the importance of biological individuals (conceived of as integrated, self-maintaining organizations) in the build-up of more complex collaborative networks in the course of evolution. This chapter proposes a process-based organizational ontology for biology, according to which the essential features of unicellular organismicality are captured by a self-maintaining organization of processes integrated by means of a special type of collaboration (realized through regulatory processes entailing an indispensable interdependence) between its constitutive and its interactive aspects. This ontology is then used to describe different types of collaborations among cells and to suggest the type that yields a multicellular organism. The proposed organizational framework enables us to critically assess hypercollaborative views of life, especially issues related to the distinction between biological individuals and organisms and between life and non-life, without however underestimating the central biological role of collaboration.


2021 ◽  
Vol 22 (12) ◽  
pp. 6222
Author(s):  
Kacper Szewczyk ◽  
Aleksandra Chojnacka ◽  
Magdalena Górnicka

Tocopherols and tocotrienols are natural compounds of plant origin, available in the nature. They are supplied in various amounts in a diet, mainly from vegetable oils, some oilseeds, and nuts. The main forms in the diet are α- and γ-tocopherol, due to the highest content in food products. Nevertheless, α-tocopherol is the main form of vitamin E with the highest tissue concentration. The α- forms of both tocopherols and tocotrienols are considered as the most metabolically active. Currently, research results indicate also a greater antioxidant potential of tocotrienols than tocopherols. Moreover, the biological role of vitamin E metabolites have received increasing interest. The aim of this review is to update the knowledge of tocopherol and tocotrienol bioactivity, with a particular focus on their bioavailability, distribution, and metabolism determinants in humans. Almost one hundred years after the start of research on α-tocopherol, its biological properties are still under investigation. For several decades, researchers’ interest in the biological importance of other forms of vitamin E has also been growing. Some of the functions, for instance the antioxidant functions of α- and γ-tocopherols, have been confirmed in humans, while others, such as the relationship with metabolic disorders, are still under investigation. Some studies, which analyzed the biological role and mechanisms of tocopherols and tocotrienols over the past few years described new and even unexpected cellular and molecular properties that will be the subject of future research.


1983 ◽  
Vol 60 (6) ◽  
pp. 465 ◽  
Author(s):  
S. Krishnamurthy
Keyword(s):  

1993 ◽  
Vol 268 (36) ◽  
pp. 26941-26949
Author(s):  
A D'Aniello ◽  
G D'Onofrio ◽  
M Pischetola ◽  
G D'Aniello ◽  
A Vetere ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carmen N. Hernández-Candia ◽  
Sarah Pearce ◽  
Chandra L. Tucker

AbstractDynamic membraneless compartments formed by protein condensates have multifunctional roles in cellular biology. Tools that inducibly trigger condensate formation have been useful for exploring their cellular function, however, there are few tools that provide inducible control over condensate disruption. To address this need we developed DisCo (Disassembly of Condensates), which relies on the use of chemical dimerizers to inducibly recruit a ligand to the condensate-forming protein, triggering condensate dissociation. We demonstrate use of DisCo to disrupt condensates of FUS, associated with amyotrophic lateral sclerosis, and to prevent formation of polyglutamine-containing huntingtin condensates, associated with Huntington’s disease. In addition, we combined DisCo with a tool to induce condensates with light, CRY2olig, achieving bidirectional control of condensate formation and disassembly using orthogonal inputs of light and rapamycin. Our results demonstrate a method to manipulate condensate states that will have broad utility, enabling better understanding of the biological role of condensates in health and disease.


1991 ◽  
Vol 202 (3) ◽  
pp. 923-930 ◽  
Author(s):  
Laszlo PRONAI ◽  
Kohji ICHIMORI ◽  
Hiroyuki NOZAKI ◽  
Hiroe NAKAZAWA ◽  
Haruka OKINO ◽  
...  

Nature ◽  
1957 ◽  
Vol 180 (4584) ◽  
pp. 507-508 ◽  
Author(s):  
A. P. VINOGRADOV
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document