scholarly journals Iron –sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery

2015 ◽  
Vol 1853 (6) ◽  
pp. 1493-1512 ◽  
Author(s):  
Nunziata Maio ◽  
Tracey A. Rouault
2019 ◽  
Vol 116 (28) ◽  
pp. 14368-14373 ◽  
Author(s):  
Laurence Yang ◽  
Nathan Mih ◽  
Amitesh Anand ◽  
Joon Ho Park ◽  
Justin Tan ◽  
...  

Catalysis using iron–sulfur clusters and transition metals can be traced back to the last universal common ancestor. The damage to metalloproteins caused by reactive oxygen species (ROS) can prevent cell growth and survival when unmanaged, thus eliciting an essential stress response that is universal and fundamental in biology. Here we develop a computable multiscale description of the ROS stress response inEscherichia coli, called OxidizeME. We use OxidizeME to explain four key responses to oxidative stress: 1) ROS-induced auxotrophy for branched-chain, aromatic, and sulfurous amino acids; 2) nutrient-dependent sensitivity of growth rate to ROS; 3) ROS-specific differential gene expression separate from global growth-associated differential expression; and 4) coordinated expression of iron–sulfur cluster (ISC) and sulfur assimilation (SUF) systems for iron–sulfur cluster biosynthesis. These results show that we can now develop fundamental and quantitative genotype–phenotype relationships for stress responses on a genome-wide basis.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Hidenori Otera ◽  
Katsuyoshi Mihara

Mitochondria participate in a variety of physiologic processes, such as ATP production, lipid metabolism, iron-sulfur cluster biogenesis, and calcium buffering. The morphology of mitochondria changes dynamically due to their frequent fusion and division in response to cellular conditions, and these dynamics are an important constituent of apoptosis. The discovery of large GTPase family proteins that regulate mitochondrial dynamics, together with novel insights into the role of mitochondrial fusion and fission in apoptosis, has provided important clues to understanding the molecular mechanisms of cellular apoptosis. In this paper, we briefly summarize current knowledge of the role of mitochondrial dynamics in apoptosis and cell pathophysiology in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document