scholarly journals GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop

2017 ◽  
Vol 1864 (10) ◽  
pp. 1605-1617 ◽  
Author(s):  
Xihe Zhao ◽  
Yunhui Liu ◽  
Jian Zheng ◽  
Xiaobai Liu ◽  
Jiajia Chen ◽  
...  
Author(s):  
Yang Jiang ◽  
Jinpeng Zhou ◽  
Junshuang Zhao ◽  
Haiying Zhang ◽  
Long Li ◽  
...  

Abstract Background Glioma is the most common and lethal primary brain tumor in adults, and angiogenesis is one of the key factors contributing to its proliferation, aggressiveness, and malignant transformation. However, the discovery of novel oncogenes and the study of its molecular regulating mechanism based on circular RNAs (circRNAs) may provide a promising treatment target in glioma. Methods Bioinformatics analysis, qPCR, western blotting, and immunohistochemistry were used to detect the expression levels of ISL2, miR-342–3p, circRNA ARF1 (cARF1), U2AF2, and VEGFA. Patient-derived glioma stem cells (GSCs) were established for the molecular experiments. Lentiviral-based infection was used to regulate the expression of these molecules in GSCs. The MTS, EDU, Transwell, and tube formation assays were used to detect the proliferation, invasion, and angiogenesis of human brain microvessel endothelial cells (hBMECs). RNA-binding protein immunoprecipitation, RNA pull-down, dual-luciferase reporter, and chromatin immunoprecipitation assays were used to detect the direct regulation mechanisms among these molecules. Results We first identified a novel transcription factor related to neural development. ISL2 was overexpressed in glioma and correlated with poor patient survival. ISL2 transcriptionally regulated VEGFA expression in GSCs and promoted the proliferation, invasion, and angiogenesis of hBMECs via VEGFA-mediated ERK signaling. Regarding its mechanism of action, cARF1 upregulated ISL2 expression in GSCs via miR-342–3p sponging. Furthermore, U2AF2 bound to and promoted the stability and expression of cARF1, while ISL2 induced the expression of U2AF2, which formed a feedback loop in GSCs. We also showed that both U2AF2 and cARF1 had an oncogenic effect, were overexpressed in glioma, and correlated with poor patient survival. Conclusions Our study identified a novel feedback loop among U2AF2, cARF1, miR-342–3p, and ISL2 in GSCs. This feedback loop promoted glioma angiogenesis, and could provide an effective biomarker for glioma diagnosis and prognostic evaluation, as well as possibly being used for targeted therapy.


2012 ◽  
Vol 8 (2) ◽  
pp. 187-193
Author(s):  
Zu Bin Zhang ◽  
Xiao Gang Jiang ◽  
Zhong Qin Liang ◽  
Zhen Lun Gu

Oncogene ◽  
2014 ◽  
Vol 34 (11) ◽  
pp. 1407-1419 ◽  
Author(s):  
Z Wang ◽  
B Wang ◽  
Y Shi ◽  
C Xu ◽  
H L Xiao ◽  
...  

2019 ◽  
Vol 22 (5) ◽  
pp. 840-840
Author(s):  
Jun Wang ◽  
Sen-Lin Xu ◽  
Jiang-Jie Duan ◽  
Liang Yi ◽  
Yu-Feng Guo ◽  
...  

2015 ◽  
Vol 35 (2) ◽  
pp. 869-877 ◽  
Author(s):  
ZHIWU WU ◽  
YONG HAN ◽  
YANYAN LI ◽  
XUETAO LI ◽  
TING SUN ◽  
...  

2013 ◽  
Vol 34 (5) ◽  
pp. 681-690 ◽  
Author(s):  
Wen-juan Wang ◽  
Lin-mei Long ◽  
Neng Yang ◽  
Qing-qing Zhang ◽  
Wen-jun Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document