Prediction errors and valence: From single units to multidimensional encoding in the amygdala

2021 ◽  
Vol 404 ◽  
pp. 113176
Author(s):  
Adam T. Brockett ◽  
Daniela Vázquez ◽  
Matthew R. Roesch
2020 ◽  
Vol 43 ◽  
Author(s):  
Kellen Mrkva ◽  
Luca Cian ◽  
Leaf Van Boven

Abstract Gilead et al. present a rich account of abstraction. Though the account describes several elements which influence mental representation, it is worth also delineating how feelings, such as fluency and emotion, influence mental simulation. Additionally, though past experience can sometimes make simulations more accurate and worthwhile (as Gilead et al. suggest), many systematic prediction errors persist despite substantial experience.


1963 ◽  
Vol 6 (4) ◽  
pp. 359-368 ◽  
Author(s):  
Charles I. Berlin

Hearing in mice has been difficult to measure behaviorally. With GSR as the basic tool, the sensitivity curve to pure tones in mice has been successfully outlined. The most sensitive frequency-intensity combination was 15 000 cps at 0-5 dB re: 0.0002 dyne/cm 2 , with responses noted from 1 000 to beyond 70 000 cps. Some problems of reliability of conditioning were encountered, as well as findings concerning the inverse relationship between the size of GSR to unattenuated tones and the sound pressure necessary to elicit conditioned responses at or near threshold. These data agree well with the sensitivity of single units of the eighth nerve of the mouse.


1968 ◽  
Vol 11 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Alan Gill ◽  
Charles I. Berlin

The unconditioned GSR’s elicited by tones of 60, 70, 80, and 90 dB SPL were largest in the mouse in the ranges around 10,000 Hz. The growth of response magnitude with intensity followed a power law (10 .17 to 10 .22 , depending upon frequency) and suggested that the unconditioned GSR magnitude assessed overall subjective magnitude of tones to the mouse in an orderly fashion. It is suggested that hearing sensitivity as assessed by these means may be closely related to the spectral content of the mouse’s vocalization as well as to the number of critically sensitive single units in the mouse’s VIIIth nerve.


Author(s):  
Roberto Limongi ◽  
Angélica M. Silva

Abstract. The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production – where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.


2020 ◽  
Author(s):  
Kate Ergo ◽  
Luna De Vilder ◽  
Esther De Loof ◽  
Tom Verguts

Recent years have witnessed a steady increase in the number of studies investigating the role of reward prediction errors (RPEs) in declarative learning. Specifically, in several experimental paradigms RPEs drive declarative learning; with larger and more positive RPEs enhancing declarative learning. However, it is unknown whether this RPE must derive from the participant’s own response, or whether instead any RPE is sufficient to obtain the learning effect. To test this, we generated RPEs in the same experimental paradigm where we combined an agency and a non-agency condition. We observed no interaction between RPE and agency, suggesting that any RPE (irrespective of its source) can drive declarative learning. This result holds implications for declarative learning theory.


Bionatura ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 1423-1426
Author(s):  
Bruna Rech ◽  
Fernando A. Gonzales-Zubiate

Ribonucleases (RNases) functions in the cell include precise maturation of non- coding RNAs and degradation of specific RNA transcripts that are no longer necessary. RNAses are present in the cell as single units or assembled as multimeric complexes; one of these complexes is the RNA exosome, a highly conserved complex essential for RNA processing and degradation. In the yeast Saccharomyces cerevisiae, the RNA exosome comprises eleven subunits, two with catalytic activity: Rrp6 and Rrp44, where the Rrp6 subunit is exclusively nuclear. Despite the RNA exosome has been intensively investigated since its discovery in 1997, only a few studies were accomplished concerning its nuclear transport. This review describes recent research about cellular localization and transport of this essential complex.


1974 ◽  
Vol 47 (1) ◽  
pp. 11 ◽  
Author(s):  
Mervin Daub
Keyword(s):  

1975 ◽  
Vol 38 (2) ◽  
pp. 418-429 ◽  
Author(s):  
L. M. Aitkin ◽  
J. Boyd

The responses of 146 cerebellar neurons to tone stimuli were studied in 29 cats anesthetized with chloralose-urethan and in 7 decerebrate preparations. Units were classified as onset or sustained firing. Onset spikes occurred on stimulation of either ear and showed binaural facilitation, while sustained discharges were frequently only excited by monaural stimulation. The latent periods of sustained discharges appeared to be shorter than those of onset responses, and sustained discharges were also more sharply tuned than the onset units. Evidence was presented suggesting that onset responses reflected input from the inferior colliculus and sustained responses, the cochlear nucleus. The sterotyped facilitatory behavior of onset units suggested that a maximal discharge might occur if sounds were of equal intensity at each ear; 26 neurons were examined with variable interaural time or intensity differences and 10 of these exhibited maximal firing when the interaural time and intensity difference was zero--i.e., if the sound was located directly in front of the head.


Sign in / Sign up

Export Citation Format

Share Document