scholarly journals Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

2008 ◽  
Vol 375 (2) ◽  
pp. 200-204 ◽  
Author(s):  
Jun Song ◽  
Jing Li ◽  
Joshua M. Mourot ◽  
B. Mark Evers ◽  
Dai H. Chung
2006 ◽  
Vol 290 (6) ◽  
pp. C1469-C1476 ◽  
Author(s):  
Jun Song ◽  
Jing Li ◽  
Andrew Lulla ◽  
B. Mark Evers ◽  
Dai H. Chung

Protein kinase D (PKD) is a novel protein serine kinase that has recently been implicated in diverse cellular functions, including apoptosis and cell proliferation. The purpose of our present study was 1) to define the activation of PKD in intestinal epithelial cells treated with H2O2, an agent that induces oxidative stress, and 2) to delineate the upstream signaling mechanisms mediating the activation of PKD. We found that the activation of PKD is induced by H2O2 in both a dose- and time-dependent fashion. PKD phosphorylation was attenuated by rottlerin, a selective PKC-δ inhibitor, and by small interfering RNA (siRNA) directed against PKC-δ, suggesting the regulation of PKD activity by upstream PKC-δ. Activation of PKD was also blocked by a Rho kinase (ROK)-specific inhibitor, Y-27632, as well as by C3, a Rho protein inhibitor, demonstrating that the Rho/ROK pathway also mediates PKD activity in intestinal cells. In addition, H2O2-induced PKC-δ phosphorylation was inhibited by C3 treatment, further suggesting that PKC-δ is downstream of Rho/ROK. Interestingly, H2O2-induced intestinal cell apoptosis was enhanced by PKD siRNA. Together, these results clearly demonstrate that oxidative stress induces PKD activation in intestinal epithelial cells and that this activation is regulated by upstream PKC-δ and Rho/ROK pathways. Importantly, our findings suggest that PKD activation protects intestinal epithelial cells from oxidative stress-induced apoptosis. These findings have potential clinical implications for intestinal injury associated with oxidative stress (e.g., necrotizing enterocolitis in infants).


2004 ◽  
Vol 279 (26) ◽  
pp. 27482-27493 ◽  
Author(s):  
Richard T. Waldron ◽  
Osvaldo Rey ◽  
Elena Zhukova ◽  
Enrique Rozengurt

2011 ◽  
Vol 300 (1) ◽  
pp. G120-G129 ◽  
Author(s):  
Edwin C. Thrower ◽  
Jingzhen Yuan ◽  
Ashar Usmani ◽  
Yannan Liu ◽  
Courtney Jones ◽  
...  

Novel protein kinase C isoforms (PKC δ and ε) mediate early events in acute pancreatitis. Protein kinase D (PKD/PKD1) is a convergent point of PKC δ and ε in the signaling pathways triggered through CCK or cholinergic receptors and has been shown to activate the transcription factor NF-κB in acute pancreatitis. For the present study we hypothesized that a newly developed PKD/PKD1 inhibitor, CRT0066101, would prevent the initial events leading to pancreatitis. We pretreated isolated rat pancreatic acinar cells with CRT0066101 and a commercially available inhibitor Gö6976 (10 μM). This was followed by stimulation for 60 min with high concentrations of cholecystokinin (CCK, 0.1 μM), carbachol (CCh, 1 mM), or bombesin (10 μM) to induce initial events of pancreatitis. PKD/PKD1 phosphorylation and activity were measured as well as zymogen activation, amylase secretion, cell injury and NF-κB activation. CRT0066101 dose dependently inhibited secretagogue-induced PKD/PKD1 activation and autophosphorylation at Ser-916 with an IC50 ∼3.75–5 μM but had no effect on PKC-dependent phosphorylation of the PKD/PKD1 activation loop (Ser-744/748). Furthermore, CRT0066101 reduced secretagogue-induced zymogen activation and amylase secretion. Gö6976 reduced zymogen activation but not amylase secretion. Neither inhibitor affected basal zymogen activation or secretion. CRT0066101 did not affect secretagogue-induced cell injury or changes in cell morphology, but it reduced NF-κB activation by 75% of maximal for CCK- and CCh-stimulated acinar cells. In conclusion, CRT0066101 is a potent and specific PKD family inhibitor. Furthermore, PKD/PKD1 is a potential mediator of zymogen activation, amylase secretion, and NF-κB activation induced by a range of secretagogues in pancreatic acinar cells.


2001 ◽  
Vol 280 (4) ◽  
pp. C929-C942 ◽  
Author(s):  
Terence Chiu ◽  
Enrique Rozengurt

Protein kinase C (PKC) is implicated in the regulation of multiple important functions in intestinal epithelial cells, but the downstream signaling targets of PKCs in these cells remain poorly characterized. Here we report that treatment of normal rat intestinal cell lines IEC-6 and IEC-18 with phorbol 12,13-dibutyrate (PDBu) led to a rapid and striking PKC-dependent activation of protein kinase D (PKD; also known as PKCμ). Unlike conventional and novel PKCs, PKD did not undergo downregulation in response to prolonged (24 h) exposure of IEC-6 or IEC-18 cells to PDBu. PKD was also rapidly activated in these cells by lysophosphatidic acid (LPA) or angiotensin in a concentration-dependent fashion via a PKC-dependent pathway. EC50 values were 0.1 μM and 2 nM for LPA and angiotensin II, respectively. LPA-induced PKD activation was prevented selectively by treatment with pertussis toxin. PKD activation was tightly associated with an increase in PKD autophosphorylation at serine 916. Our results identify PKD as a novel early point of convergence and integration of Gi and Gq signaling in intestinal epithelial cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Kan Xiao ◽  
Congcong Liu ◽  
Zhixiao Tu ◽  
Qiao Xu ◽  
Shaokui Chen ◽  
...  

Oxidative stress can lead to intestinal cell injury as well as the induction of inflammation. It is not clear whether inflammation is an important factor leading to cell injury caused by oxidative stress. The purpose of this study was to investigate the role of inflammation in intestinal injury caused by hydrogen peroxide (H2O2). Our results revealed that H2O2 stimulation significantly decreased the viability of intestinal porcine epithelial cells (IPEC-1), increased lactate dehydrogenase (LDH) activity, and disrupted the distribution of the tight junction protein claudin-1. H2O2 significantly increased the mRNA expression of interleukin-6 (IL-6), IL-8, and tumor necrosis factor-α (TNF-α). H2O2 stimulation also led to increased phosphorylation of p38 and jun N-terminal kinase (JNK), and p65 NF-κB protein translocation into the nucleus of IPEC-1 cells. Cells treated with the NF-κB inhibitor (BAY11-7082), the p38 inhibitor (SB202190), or the JNK inhibitor (PD98059) significantly decreased mRNA and protein expression of IL-6, IL-8, and TNF-α. However, treatment with mitogen-activated protein kinase (MAPK) or NF-κB inhibitors did not prevent the damage effect on cell viability, LDH activity, or the distribution of claudin-1 in cells challenged with H2O2. In summary, our data demonstrate that activation of the NF-κB and MAPK signaling pathways can contribute to the inflammatory response, but not cell injury, in IPEC-1 cells challenged with H2O2.


2017 ◽  
Vol 142 (6) ◽  
pp. 948-961 ◽  
Author(s):  
Hanna Liliom ◽  
Krisztián Tárnok ◽  
Zsófia Ábrahám ◽  
Bence Rácz ◽  
Angelika Hausser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document