Deficiency of vascular endothelial growth factor-D does not affect murine adipose tissue development

2009 ◽  
Vol 378 (2) ◽  
pp. 255-258 ◽  
Author(s):  
H.R. Lijnen ◽  
L. Frederix ◽  
B. Van Hoef ◽  
M. Dewerchin
2013 ◽  
Vol 27 (8) ◽  
pp. 3257-3271 ◽  
Author(s):  
Mandrita Bagchi ◽  
Leo A. Kim ◽  
Jeremie Boucher ◽  
Tony E. Walshe ◽  
C. Ronald Kahn ◽  
...  

2018 ◽  
Vol 9 ◽  
pp. 204173141880863 ◽  
Author(s):  
Qiang Chang ◽  
Junrong Cai ◽  
Ying Wang ◽  
Ruijia Yang ◽  
Malcolm Xing ◽  
...  

Soft tissue generation, especially in large tissue, is a major challenge in reconstructive surgery to treat congenital deformities, posttraumatic repair, and cancer rehabilitation. The concern is along with the donor site morbidity, donor tissue shortage, and flap necrosis. Here, we report a dissection-free adipose tissue chamber–based novel guided adipose tissue regeneration strategy in a bioreactor of elastic gelatin cryogel and polydopamine-assisted platelet immobilization intended to improve angiogenesis and generate large adipose tissue in situ. In order to have matched tissue mechanics, we used 5% gelatin cryogel as growth substrate of bioreactor. Platelets from the platelet-rich plasma were then immobilized onto the gelatin cryogel with the aid of polydopamine to form a biomimetic bioreactor (polydopamine/gelatin cryogel/platelet). Platelets on the substrate led to a sustained high release in both platelet-derived growth factor and vascular endothelial growth factor compared with non-polydopamine-assisted group. The formed bioreactor was then transferred to a tissue engineering chamber and then inserted above inguinal fat pad of rats without flap dissection. This integrate strategy significantly boomed the vessel density, stimulated cellular proliferation, and upregulated macrophage infiltration. There was a noticeable rise in the expression of dual-angiogenic growth factors (platelet-derived growth factor and vascular endothelial growth factor) in chamber fluid; host cell migration and host fibrous protein secretion coordinated with gelatin cryogel degradation. The regenerated adipose tissue volume gained threefold larger than control group (p < 0.05) with less fibrosis tissue. These results indicate that a big well-vascularized three-dimensional mature adipose tissue can be regenerated using elastic gel, polydopamine, platelets, and small fat tissue.


2019 ◽  
Vol 189 (4) ◽  
pp. 924-939 ◽  
Author(s):  
Adri Chakraborty ◽  
Sheridan Barajas ◽  
Gabriela M. Lammoglia ◽  
Andrea J. Reyna ◽  
Thomas S. Morley ◽  
...  

2004 ◽  
Vol 13 (3) ◽  
pp. 103
Author(s):  
Gersina Rega ◽  
Christoph Kaun ◽  
Thomas W Weiss ◽  
Svitlana Demyanets ◽  
Manfred Frey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document