Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

2010 ◽  
Vol 399 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Dang Wang ◽  
Liurong Fang ◽  
Rui Luo ◽  
Rui Ye ◽  
Ying Fang ◽  
...  
2011 ◽  
Vol 31 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Camila C.A. Dias ◽  
Mauro P. Moraes ◽  
Fayna Diaz-San Segundo ◽  
Teresa de los Santos ◽  
Marvin J. Grubman

2018 ◽  
Vol 9 ◽  
Author(s):  
Xiao-xia Ma ◽  
Li-na Ma ◽  
Qiu-yan Chang ◽  
Peng Ma ◽  
Lin-Jie Li ◽  
...  

2019 ◽  
Vol 127 ◽  
pp. 79-84 ◽  
Author(s):  
Shi-fang Li ◽  
Mei-jiao Gong ◽  
Yin-li Xie ◽  
Jun–jun Shao ◽  
Fu-rong Zhao ◽  
...  

2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Gisselle N. Medina ◽  
Paul Azzinaro ◽  
Elizabeth Ramirez-Medina ◽  
Joseph Gutkoska ◽  
Ying Fang ◽  
...  

ABSTRACT Foot-and-mouth disease virus (FMDV) leader proteinase (Lpro) affects several pathways of the host innate immune response. Previous studies in bovine cells demonstrated that deletions (leaderless [LLV]) or point mutations in Lpro result in increased expression of interferon (IFN) and IFN-stimulated genes (ISGs), including, among others, the ubiquitin-like protein modifier ISG15 and the ubiquitin specific peptidase USP18. In addition to its conventional papain-like protease activity, Lpro acts as a deubiquitinase (DUB) and deISGylase. In this study, we identified a conserved residue in Lpro that is involved in its interaction with ISG15. Mutation W105A rendered Escherichia coli-expressed Lpro unable to cleave the synthetic substrate pro-ISG15 while preserving cellular eIF4G cleavage. Interestingly, mutant FMDV W105A was viable. Overexpression of ISG15 and the ISGylation machinery in porcine cells resulted in moderate inhibition of FMDV replication, along with a decrease of the overall state of ISGylation in wild-type (WT)-infected cells. In contrast, reduced deISGylation was observed upon infection with W105A and leaderless virus. Reduction in the levels of deubiquitination was also observed in cells infected with the FMDV LproW105A mutant. Surprisingly, similarly to WT, infection with W105A inhibited IFN/ISG expression despite displaying an attenuated phenotype in vivo in mice. Altogether, our studies indicate that abolishing/reducing the deISGylase/DUB activity of Lpro causes viral attenuation independently of its ability to block the expression of IFN and ISG mRNA. Furthermore, our studies highlight the potential of ISG15 to be developed as a novel biotherapeutic molecule against FMD. IMPORTANCE In this study, we identified an aromatic hydrophobic residue in foot-and-mouth disease virus (FMDV) leader proteinase (Lpro) (W105) that is involved in the interaction with ISG15. Mutation in Lpro W105 (A12-LproW105A) resulted in reduced deISGylation in vitro and in porcine-infected cells. Impaired deISGylase activity correlated with viral attenuation in vitro and in vivo and did not affect the ability of Lpro to block expression of type I interferon (IFN) and other IFN-stimulated genes. Moreover, overexpression of ISG15 resulted in the reduction of FMDV viral titers. Thus, our study highlights the potential use of Lpro mutants with modified deISGylase activity for development of live attenuated vaccine candidates, and ISG15 as a novel biotherapeutic against FMD.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1776
Author(s):  
Pathum Ekanayaka ◽  
Byeong-Hoon Lee ◽  
Asela Weerawardhana ◽  
Kiramage Chathuranga ◽  
Jong-Hyeon Park ◽  
...  

As a structural protein of the Foot-and-mouth disease virus (FMDV), VP3 plays a vital role in virus assembly and inhibiting the interferon (IFN) signal transduction to promote FMDV replication. Previous studies demonstrated that FMDV VP3 blocks the type-I IFN response by inhibiting the mRNA expression of the mitochondrial antiviral-signaling protein (MAVS); however, the underlying mechanism is poorly understood. Here, we describe the specificity of FMDV VP3 interaction with the transmembrane (TM) domain of MAVS as FMDV driven type-I IFN inhibitory mechanism for its effective replication. The TM domain of MAVS governs the mitochondria localization of MAVS, and it is a key factor in type-I IFN signaling transduction via MAVS aggregation. Thereby, the interaction of FMDV VP3 with the TM domain of MAVS leads to the inhibition of MAVS mitochondria localization, self-association, and aggregation, resulting in the suppression of type-I IFN response. Collectively, these results provide a clear understanding of a key molecular mechanism used by the FMDV VP3 for the suppression of IFN responses via targeting MAVS.


2009 ◽  
Vol 84 (4) ◽  
pp. 2063-2077 ◽  
Author(s):  
Fayna Diaz-San Segundo ◽  
Mauro P. Moraes ◽  
Teresa de los Santos ◽  
Camila C. A. Dias ◽  
Marvin J. Grubman

ABSTRACT Previously, we demonstrated that type I interferon (IFN-α/β) or a combination of IFN-α/β and type II IFN (IFN-γ) delivered by a replication-defective human adenovirus 5 (Ad5) vector protected swine when challenged 1 day later with foot-and-mouth disease virus (FMDV). To gain a more comprehensive understanding of the mechanism of protection induced by IFNs, we inoculated groups of six swine with Ad5-vectors containing these genes, challenged 1 day later and euthanized 2 animals from each group prior to (1 day postinoculation [dpi]) and at 1 (2 dpi) and 6 days postchallenge (7 dpi). Blood, skin, and lymphoid tissues were examined for IFN-stimulated gene (ISG) induction and infiltration by innate immune cells. All IFN-inoculated animals had delayed and decreased clinical signs and viremia compared to the controls, and one animal in the IFN-α treated group did not develop disease. At 1 and 2 dpi the groups inoculated with the IFNs had increased numbers of dendritic cells and natural killer cells in the skin and lymph nodes, respectively, as well as increased levels of several ISGs compared to the controls. In particular, all tissues examined from IFN-treated groups had significant upregulation of the chemokine 10-kDa IFN-γ-inducible protein 10, and preferential upregulation of 2′,5′-oligoadenylate synthetase, Mx1, and indoleamine 2,3-dioxygenase. There was also upregulation of monocyte chemotactic protein 1 and macrophage inflammatory protein 3α in the skin. These data suggest that there is a complex interplay between IFN-induced immunomodulatory and antiviral activities in protection of swine against FMDV.


Sign in / Sign up

Export Citation Format

Share Document