Long non-coding RNA THOR promotes human osteosarcoma cell growth in vitro and in vivo

2018 ◽  
Vol 499 (4) ◽  
pp. 913-919 ◽  
Author(s):  
Wangzhen Chen ◽  
Meikai Chen ◽  
Yifan Xu ◽  
Xuerong Chen ◽  
Ping Zhou ◽  
...  
2020 ◽  
Vol 45 (1) ◽  
Author(s):  
Jun Wang ◽  
Chao Qin ◽  
Chen Zhong ◽  
Yong Wen ◽  
Sha Ke ◽  
...  

2015 ◽  
Vol 37 (3) ◽  
pp. 933-939 ◽  
Author(s):  
Wei Hu ◽  
ZengMing Xiao

Background/Aims: Phytoestrogens are known to prevent tumor progression by inhibiting proliferation and inducing apoptosis in cancer cells. Formononetin is one of the main components of red clover plants, and is considered as a typical phytoestrogen. This study investigates formononetin induction of apoptosis of human osteosarcoma cell line U2OS by regulating Bcl-2 and Bax expression in vitro and in vivo. Methods: U2OS cells were treated with different concentrations of formononetin and the proliferation of the cells was measured using an MTT assay. Cell apoptosis was examined by flow cytometry. The levels of miR-375, Bax and Bcl-2 protein expression in treated cells were determined by Western blot and RT-PCR. The antitumor activity of formononetin was also evaluated in vivo in nude mice bearing orthotopic tumor implants. Results: High concentrations of formononetin significantly suppress the proliferation of U2OS cells and induce cell apoptosis. Moreover, compared to control group the expression of Bcl-2 and miR-375 decreases with formononetin in the U2OS cells, while Bax increases. Conclusion: Formononetin has inhibitory effects on the proliferation of U2SO cells, both in vitro and in vivo. This antitumor effect is directly correlated with formononetin concentration.


2001 ◽  
Vol 12 (5) ◽  
pp. 459-465 ◽  
Author(s):  
Jürgen Sonnemann ◽  
Vera Eckervogt ◽  
Borna Truckenbrod ◽  
Joachim Boos ◽  
Winfried Winkelmann ◽  
...  

2003 ◽  
Vol 1 (4) ◽  
pp. 207-215 ◽  
Author(s):  
V. J. Poirier ◽  
M. K. Huelsmeyer ◽  
I. D. Kurzman ◽  
D. H. Thamm ◽  
D. M. Vail

2020 ◽  
Vol 12 (43) ◽  
pp. 48296-48309
Author(s):  
Guanping He ◽  
Xiaoyu Pan ◽  
Xiao Liu ◽  
Ye Zhu ◽  
Yunlong Ma ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4199
Author(s):  
Haydee M. Torres ◽  
Ashley M. VanCleave ◽  
Mykayla Vollmer ◽  
Dakota L. Callahan ◽  
Austyn Smithback ◽  
...  

Dysregulation of histone deacetylases (HDACs) is associated with the pathogenesis of human osteosarcoma, which may present an epigenetic vulnerability as well as a therapeutic target. Domatinostat (4SC-202) is a next-generation class I HDAC inhibitor that is currently being used in clinical research for certain cancers, but its impact on human osteosarcoma has yet to be explored. In this study, we report that 4SC-202 inhibits osteosarcoma cell growth in vitro and in vivo. By analyzing cell function in vitro, we show that the anti-tumor effect of 4SC-202 involves the combined induction of cell-cycle arrest at the G2/M phase and apoptotic program, as well as a reduction in cell invasion and migration capabilities. We also found that 4SC-202 has little capacity to promote osteogenic differentiation. Remarkably, 4SC-202 revised the global transcriptome and induced distinct signatures of gene expression in vitro. Moreover, 4SC-202 decreased tumor growth of established human tumor xenografts in immunodeficient mice in vivo. We further reveal key targets regulated by 4SC-202 that contribute to tumor cell growth and survival, and canonical signaling pathways associated with progression and metastasis of osteosarcoma. Our study suggests that 4SC-202 may be exploited as a valuable drug to promote more effective treatment of patients with osteosarcoma and provide molecular insights into the mechanism of action of class I HDAC inhibitors.


2004 ◽  
Vol 12 (1/2) ◽  
pp. 135-145 ◽  
Author(s):  
M. Waheed Roomi ◽  
Vadim Ivanov ◽  
Tatiana Kalinovsky ◽  
Aleksandra Niedzwiecki ◽  
Matthias Rath

2021 ◽  
Vol 14 (6) ◽  
pp. 532
Author(s):  
Muhammad Nazirul Mubin Aziz ◽  
Nurul Fattin Che Rahim ◽  
Yazmin Hussin ◽  
Swee Keong Yeap ◽  
Mas Jaffri Masarudin ◽  
...  

Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ling Zhou ◽  
Xiao-li Xu

<b><i>Background:</i></b> Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. <b><i>Methods:</i></b> Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. <b><i>Results:</i></b> The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. <b><i>Conclusion:</i></b> ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document