Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758

2018 ◽  
Vol 503 (2) ◽  
pp. 815-821 ◽  
Author(s):  
Wei Peng ◽  
Wei Deng ◽  
Jing Zhang ◽  
Gengwang Pei ◽  
Qiong Rong ◽  
...  
BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Lingzhi Lai ◽  
Zhaodan Wang ◽  
Yihong Ge ◽  
Wei Qiu ◽  
Buling Wu ◽  
...  

Abstract Backgroud The mechanism implicated in the osteogenesis of human periodontal ligament stem cells (PDLSCs) has been investigated for years. Previous genomics data analyses showed that long noncoding RNA (lncRNA), microRNA (miRNA) and messenger RNA (mRNA) have significant expression differences between induced and control human PDLSCs. Competing for endogenous RNAs (ceRNA), as a widely studied mechanism in regenerative medicine, while rarely reported in periodontal regeneration. The key lncRNAs and their ceRNA network might provide new insights into molecular therapies of periodontal regeneration based on PDLSCs. Results Two networks reflecting the relationships among differentially expressed RNAs were constructed. One ceRNA network was composed of 6 upregulated lncRNAs, 280 upregulated mRNAs, and 18 downregulated miRNAs. The other network contained 33 downregulated lncRNAs, 73 downregulated mRNAs, and 5 upregulated miRNAs. Functional analysis revealed that 38 GO terms and 8 pathways related with osteogenesis were enriched. Twenty-four osteogenesis-related gene-centred lncRNA-associated ceRNA networks were successfully constructed. Among these pathways, we highlighted MAPK and TGF-beta pathways that are closely related to osteogenesis. Subsequently, subnetworks potentially linking the GO:0001649 (osteoblast differentiation), MAPK and TGF-beta pathways were constructed. The qRT-PCR validation results were consistent with the microarray analysis. Conclusion We construct a comprehensively identified lncRNA-associated ceRNA network might be involved in the osteogenesis of PDLSCs, which could provide insights into the regulatory mechanisms and treatment targets of periodontal regeneration.


2021 ◽  
Author(s):  
Lingzhi Lai ◽  
Zhaodan Wang ◽  
Yihong Ge ◽  
Wei Qiu ◽  
Buling Wu ◽  
...  

Abstract BACKGROUDThe mechanism implicated in the osteoblast differentiation of human periodontal ligament stem cells (PDLSCs) has been investigated for years. Previous genomics data analyses showed that long noncoding RNA (lncRNA), microRNA (miRNA) and messenger RNA (mRNA) have significant expression differences between induced and control human PDLSCs. Competing for endogenous RNAs (ceRNA), as a widely studied mechanism in regenerative medicine, while rarely reported in periodontal regeneration. The key lncRNAs and their ceRNA network might provide new insights into molecular therapies of periodontal regeneration based on PDLSCs.RESULTSTwo networks reflecting the relationships among differentially expressed RNAs were constructed. One ceRNA network was composed of 6 upregulated lncRNAs, 280 upregulated mRNAs, and 18 downregulated miRNAs. The other network contained 33 downregulated lncRNAs, 73 downregulated mRNAs, and 5 upregulated miRNAs. Functional analysis revealed that 38 GO terms and 8 pathways related with osteogenesis were enriched. Twenty-four osteogenesis-related gene-centred lncRNA-associated ceRNA networks were successfully constructed. Among these pathways, we highlighted MAPK and TGF-beta pathways that are closely related to osteogenesis. Subsequently, subnetworks potentially linking the GO:0001649 (osteoblast differentiation), MAPK and TGF-beta pathways were constructed. The qRT-PCR validation results were consistent with the microarray analysis.CONCLUSIONWe construct a comprehensively identified lncRNA-associated ceRNA network might be involved in the osteogenesis differentiation of PDLSCs, which could provide insights into the regulatory mechanisms and treatment targets of periodontal regeneration.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jia Liu ◽  
Yan Zhao ◽  
Qiannan Niu ◽  
Ni Qiu ◽  
Shuangyun Liu ◽  
...  

During the period of orthodontic tooth movement, periodontal ligament stem cells (PDLSCs) play an important role in transducing mechanical stimulation and tissue remodeling. However, our previous studies verified that the periodontitis microenvironment causes damage to the biological functions of PDLSCs and abnormal mechanical sensitivity. Long noncoding RNAs (lncRNAs) participate in the inflammatory pathogenesis and development of many diseases. Whether lncRNAs are abnormally expressed in PDLSCs obtained from periodontal tissues of periodontitis patients (PPDLSCs) and whether putative lncRNAs participate in the mechanotransductive process in PDLSCs remain poorly understood. First, we subjected PDLSCs obtained from healthy periodontal tissues (HPDLSCs) and PPDLSCs to static mechanical strain (SMS) with 12% elongation at 0.1 Hz frequency using an FX-4000T system and screened overall lncRNA profiles in both cell types by microarray. Among lncRNAs with a fold change   FC > 20.0 , 27 lncRNAs were upregulated in strained HPDLSCs, and 16 lncRNAs (9 upregulated and 7 downregulated) were detected in strained PPDLSCs. For mRNAs with FC > 20.0 , we detected 25 upregulated mRNAs and one downregulated mRNA in strained HPDLSCs and 7 upregulated and 5 downregulated mRNAs in strained PPDLSCs. Further enrichment analysis showed that, unlike HPDLSCs with annotations principally involving transduction-associated signaling pathways, dysregulated mRNAs in PPDLSCs are mainly responsible for pathological conditions. Moreover, coexpressed lncRNA-mRNA networks confirmed the pathological state and exacerbated inflammatory conditions in strained PPDLSCs. Taken together, when compared with strained HPDLSCs, various lncRNAs and mRNAs were dysregulated in PPDLSCs under mechanical forces, implicating the response of lncRNAs in PPDLSCs to mechanical stress. Moreover, we provide potential lncRNA targets, which may contribute to future intervention strategies for orthodontic treatment in periodontitis patients.


2010 ◽  
Vol 31 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Feng Pan ◽  
Rui Zhang ◽  
Guang Wang ◽  
Yin Ding

The existence of PDLSCs [PDL (periodontal ligament) stem cells] in PDL has been identified and such cells may function in periodontal reconstruction, including bone formation. Oestrogens/ERs (oestrogen receptors; ERα and ERβ) exert important effects in bone formation, however, the relationship between ERs and PDLSCs has not been established. In the present study, PDLSCs were isolated and assays for detecting stem-cell biomarkers and multipotential differentiation potential confirmed the validity of human PDLSCs. The results of RT–PCR (reverse transcription–PCR) and Western blotting showed that ERα and ERβ were expressed at higher levels in PDLSCs as compared with PDLCs (PDL cells), and 17β-oestradiol obviously induced the osteogenic differentiation of PDLSCs in vitro. Furthermore, a pan-ER inhibitor or lentivirus-mediated siRNA (small interfering RNA) targeting ERα or ERβ blocked the oestrogen-induced osteogenic differentiation of PDLSCs. The results indicate that both ERα and ERβ were involved in the process of osteogenic differentiation of PDLSCs.


2021 ◽  
Vol 6 ◽  
pp. 247275122199922
Author(s):  
Paras Ahmad ◽  
Martin J. Stoddart ◽  
Elena Della Bella

Chronic inflammatory diseases, including periodontitis, are the most common causes of bone tissue destruction. Periodontitis often leads to loss of connective tissue homeostasis and reduced alveolar bone levels. Human periodontal ligament stem cells (PDLSCs), a population of multipotent stem cells derived from periodontal ligament tissues, are considered as candidate cells for the regeneration of alveolar bone and periodontal tissues. Periodontitis impairs the osteogenic differentiation of human PDLSCs. Noncoding RNAs (ncRNAs), including long noncoding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA), have been proposed as vital regulators influencing several differentiation processes including bone regeneration. Still, the molecular mechanisms of ncRNAs regulating osteogenic differentiation of human PDLSCs remain poorly understood. Exploring the influence of ncRNAs in the process of osteogenic differentiation of human PDLSCs may provide novel therapeutic strategies for tissue regeneration as the regeneration of the lost periodontium is the ultimate goal of periodontal therapy.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Qian Jia ◽  
Xiaolin Chen ◽  
Wenkai Jiang ◽  
Wei Wang ◽  
Bin Guo ◽  
...  

Long noncoding RNAs (lncRNA) have been recognized as important regulators in diverse biological processes, such as transcriptional regulation, stem cell proliferation, and differentiation. Previous study has demonstrated that lncRNA-ANCR(antidifferentiation ncRNA) plays a key role in regulating the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). However, little is known about the role ofANCRin regulating other types of dental tissue-derived stem cells (DTSCs) behaviours (including proliferation and multiple-potential of differentiation). In this study, we investigated the regulatory effects of lncRNA-ANCRon the proliferation and differentiation (including osteogenic, adipogenic, and neurogenic differentiation) of DTSCs, including dental pulp stem cells (DPSCs), PDLSCs, and stem cells from the apical papilla (SCAP) by downregulation of lncRNA-ANCR. We found that downregulation ofANCRexerted little effect on proliferation of DPSCs and SCAP but promoted the osteogenic, adipogenic, and neurogenic differentiation of DTSCs. These data provide an insight into the regulatory effects of long noncoding RNA-ANCRon DTSCs and indicate thatANCRis a very important regulatory factor in stem cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document