High temperatures promote cell-to-cell plasmid transformation in Escherichia coli

2019 ◽  
Vol 515 (1) ◽  
pp. 196-200 ◽  
Author(s):  
Mayuko Hashimoto ◽  
Haruka Hasegawa ◽  
Sumio Maeda
2013 ◽  
Vol 76 (8) ◽  
pp. 1308-1321 ◽  
Author(s):  
ELAINE D. BERRY ◽  
PATRICIA D. MILLNER ◽  
JAMES E. WELLS ◽  
NORASAK KALCHAYANAND ◽  
MICHAEL N. GUERINI

Reducing Escherichia coli O157:H7 in livestock manures before application to cropland is critical for reducing the risk of foodborne illness associated with produce. Our objective was to determine the fate of naturally occurring E. coli O157:H7 and other pathogens during minimally managed on-farm bovine manure composting processes. Feedlot pen samples were screened to identify E. coli O157:H7–positive manure. Using this manure, four piles of each of three different composting formats were constructed in each of two replicate trials. Composting formats were (i) turned piles of manure plus hay and straw, (ii) static stockpiles of manure, and (iii) static piles of covered manure plus hay and straw. Temperatures in the tops, toes, and centers of the conical piles (ca. 6.0 m3 each) were monitored. Compost piles that were turned every 2 weeks achieved higher temperatures for longer periods in the tops and centers than did piles that were left static. E. coli O157:H7 was not recovered from top samples of turned piles of manure plus hay and straw at day 28 and beyond, but top samples from static piles were positive for the pathogen up to day 42 (static manure stockpiles) and day 56 (static covered piles of manure plus hay and straw). Salmonella, Campylobacter spp., and Listeria monocytogenes were not found in top or toe samples at the end of the composting period, but E. coli O157:H7 and Listeria spp. were recovered from toe samples at day 84. Our findings indicate that some minimally managed composting processes can reduce E. coli O157:H7 and other pathogens in bovine manure but may be affected by season and/or initial levels of indigenous thermophilic bacteria. Our results also highlight the importance of adequate C:N formulation of initial mixtures for the production of high temperatures and rapid composting, and the need for periodic turning of the piles to increase the likelihood that all parts of the mass are subjected to high temperatures.


2002 ◽  
Vol 68 (1) ◽  
pp. 430-433 ◽  
Author(s):  
Susumu Ando ◽  
Hiroyasu Ishida ◽  
Yoshitsugu Kosugi ◽  
Kazuhiko Ishikawa

ABSTRACT An endoglucanase homolog from the hyperthermophilic archaeon Pyrococcus horikoshii was expressed in Escherichia coli, and its enzymatic characteristics were examined. The expressed protein was a hyperthermostable endoglucanase which hydrolyzes celluloses, including Avicel and carboxymethyl cellulose, as well as β-glucose oligomers. This enzyme is the first endoglucanase belonging to glycosidase family 5 found from Pyrococcus species and is also the first hyperthermostable endoglucanase to which celluloses are the best substrates. This enzyme is expected to be useful for industrial hydrolysis of cellulose at high temperatures, particularly in biopolishing of cotton products.


2006 ◽  
Vol 73 (3) ◽  
pp. 1014-1018 ◽  
Author(s):  
Mirna Mujacic ◽  
Fran�ois Baneyx

ABSTRACT Hsp31, the product of the σS- and σD-dependent hchA gene, is a heat-inducible chaperone implicated in the management of protein misfolding at high temperatures. We show here that Hsp31 plays an important role in the acid resistance of starved Escherichia coli but that it has little influence on oxidative-stress survival.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Eric C. Keen ◽  
Valery V. Bliskovsky ◽  
Francisco Malagon ◽  
James D. Baker ◽  
Jeffrey S. Prince ◽  
...  

ABSTRACT Bacteriophages infect an estimated 10 23 to 10 25 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub “superspreaders,” releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. IMPORTANCE Bacteriophages (phages), viruses that infect bacteria, are the planet’s most numerous biological entities and kill vast numbers of bacteria in natural environments. Many of these bacteria carry plasmids, extrachromosomal DNA elements that frequently encode antibiotic resistance. However, it is largely unknown whether plasmids are destroyed during phage infection or released intact upon phage lysis, whereupon their encoded resistance could be acquired and manifested by other bacteria (transformation). Because phages are being developed to combat antibiotic-resistant bacteria and because transformation is a principal form of horizontal gene transfer, this question has important implications for biomedicine and microbial evolution alike. Here we report the isolation and characterization of two novel Escherichia coli phages, dubbed “superspreaders,” that promote extensive plasmid transformation and efficiently disperse antibiotic resistance genes. Our work suggests that phage superspreaders are not suitable for use in medicine but may help drive bacterial evolution in natural environments.


Sign in / Sign up

Export Citation Format

Share Document