scholarly journals Chaperone Hsp31 Contributes to Acid Resistance in Stationary-Phase Escherichia coli

2006 ◽  
Vol 73 (3) ◽  
pp. 1014-1018 ◽  
Author(s):  
Mirna Mujacic ◽  
Fran�ois Baneyx

ABSTRACT Hsp31, the product of the σS- and σD-dependent hchA gene, is a heat-inducible chaperone implicated in the management of protein misfolding at high temperatures. We show here that Hsp31 plays an important role in the acid resistance of starved Escherichia coli but that it has little influence on oxidative-stress survival.

2000 ◽  
Vol 66 (9) ◽  
pp. 3911-3916 ◽  
Author(s):  
Sang Ho Choi ◽  
David J. Baumler ◽  
Charles W. Kaspar

ABSTRACT An Escherichia coli O157:H7dps::nptI mutant (FRIK 47991) was generated, and its survival was compared to that of the parent in HCl (synthetic gastric fluid, pH 1.8) and hydrogen peroxide (15 mM) challenges. The survival of the mutant in log phase (5-h culture) was significantly impaired (4-log10-CFU/ml reduction) compared to that of the parent strain (ca. 1.0-log10-CFU/ml reduction) after a standard 3-h acid challenge. Early-stationary-phase cells (12-h culture) of the mutant decreased by ca. 4 log10CFU/ml while the parent strain decreased by approximately 2 log10 CFU/ml. No significant differences in the survival of late-stationary-phase cells (24-h culture) between the parent strain and the mutant were observed, although numbers of the parent strain declined less in the initial 1 h of acid challenge. FRIK 47991 was more sensitive to hydrogen peroxide challenge than was the parent strain, although survival improved in stationary phase. Complementation of the mutant with a functional dps gene restored acid and hydrogen peroxide tolerance to levels equal to or greater than those exhibited by the parent strain. These results demonstrate that decreases in survival were from the absence of Dps or a protein regulated by Dps. The results from this study establish that Dps contributes to acid tolerance in E. coli O157:H7 and confirm the importance of Dps in oxidative stress protection.


2009 ◽  
Vol 483 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Lici A. Schurig-Briccio ◽  
Ricardo N. Farías ◽  
Luisa Rodríguez-Montelongo ◽  
María R. Rintoul ◽  
Viviana A. Rapisarda

2004 ◽  
Vol 186 (20) ◽  
pp. 6698-6705 ◽  
Author(s):  
Jason A. Opdyke ◽  
Ju-Gyeong Kang ◽  
Gisela Storz

ABSTRACT A previous bioinformatics-based search for small RNAs in Escherichia coli identified a novel RNA named IS183. The gene encoding this small RNA is located between and on the opposite strand of genes encoding two transcriptional regulators of the acid response, gadX (yhiX) and gadW (yhiW). Given that IS183 is encoded in the gad gene cluster and because of its role in regulating acid response genes reported here, this RNA has been renamed GadY. We show that GadY exists in three forms, a long form consisting of 105 nucleotides and two processed forms, consisting of 90 and 59 nucleotides. The expression of this small RNA is highly induced during stationary phase in a manner that is dependent on the alternative sigma factor σS. Overexpression of the three GadY RNA forms resulted in increased levels of the mRNA encoding the GadX transcriptional activator, which in turn caused increased levels of the GadA and GadB glutamate decarboxylases. A promoter mutation which abolished gadY expression resulted in a reduction in the amount of gadX mRNA during stationary phase. The gadY gene was shown to overlap the 3′ end of the gadX gene, and this overlap region was found to be necessary for the GadY-dependent accumulation of gadX mRNA. We suggest that during stationary phase, GadY forms base pairs with the 3′-untranslated region of the gadX mRNA and confers increased stability, allowing for gadX mRNA accumulation and the increased expression of downstream acid resistance genes.


2017 ◽  
Vol 199 (9) ◽  
Author(s):  
Yunxue Guo ◽  
Xiaoxiao Liu ◽  
Baiyuan Li ◽  
Jianyun Yao ◽  
Thomas K. Wood ◽  
...  

ABSTRACT Host-associated bacteria, such as Escherichia coli, often encounter various host-related stresses, such as nutritional deprivation, oxidative stress, and temperature shifts. There is growing interest in searching for small endogenous proteins that mediate stress responses. Here, we characterized the small C-tail-anchored inner membrane protein ElaB in E. coli. ElaB belongs to a class of tail-anchored inner membrane proteins with a C-terminal transmembrane domain but lacking an N-terminal signal sequence for membrane targeting. Proteins from this family have been shown to play vital roles, such as in membrane trafficking and apoptosis, in eukaryotes; however, their role in prokaryotes is largely unexplored. Here, we found that the transcription of elaB is induced in the stationary phase in E. coli and stationary-phase sigma factor RpoS regulates elaB transcription by binding to the promoter of elaB. Moreover, ElaB protects cells against oxidative stress and heat shock stress. However, unlike membrane peptide toxins TisB and GhoT, ElaB does not lead to cell death, and the deletion of elaB greatly increases persister cell formation. Therefore, we demonstrate that disruption of C-tail-anchored inner membrane proteins can reduce stress resistance; it can also lead to deleterious effects, such as increased persistence, in E. coli. IMPORTANCE Escherichia coli synthesizes dozens of poorly understood small membrane proteins containing a predicted transmembrane domain. In this study, we characterized the function of the C-tail-anchored inner membrane protein ElaB in E. coli. ElaB increases resistance to oxidative stress and heat stress, while inactivation of ElaB leads to high persister cell formation. We also demonstrated that the transcription of elaB is under the direct regulation of stationary-phase sigma factor RpoS. Thus, our study reveals that small inner membrane proteins may have important cellular roles during the stress response.


Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Meltem Akbas ◽  
Tugrul Doruk ◽  
Serhat Ozdemir ◽  
Benjamin Stark

AbstractIn Escherichia coli, Vitreoscilla hemoglobin (VHb) protects against oxidative stress, perhaps, in part, by oxidizing OxyR. Here this protection, specifically VHb-associated effects on superoxide dismutase (SOD) and catalase levels, was examined. Exponential or stationary phase cultures of SOD+ or SOD− E. coli strains with or without VHb and oxyR antisense were treated with 2 mM hydrogen peroxide without sublethal peroxide induction, and compared to untreated control cultures. The hydrogen peroxide treatment was toxic to both SOD+ and SOD− cells, but much more to SOD− cells; expression of VHb in SOD+ strains enhanced this toxicity. In contrast, the presence of VHb was generally associated in the SOD+ background with a modest increase in SOD activity that was not greatly affected by oxyR antisense or peroxide treatment. In both SOD+ and SOD− backgrounds, VHb was associated with higher catalase activity both in the presence and absence of peroxide. Contrary to its stimulatory effects in stationary phase, in exponential phase oxyR antisense generally decreased VHb levels.


2014 ◽  
Vol 58 (10) ◽  
pp. 5964-5975 ◽  
Author(s):  
Jing-Hung Wang ◽  
Rachna Singh ◽  
Michael Benoit ◽  
Mimi Keyhan ◽  
Matthew Sylvester ◽  
...  

ABSTRACTStationary-phase bacteria are important in disease. The σs-regulated general stress response helps them become resistant to disinfectants, but the role of σsin bacterial antibiotic resistance has not been elucidated. Loss of σsrendered stationary-phaseEscherichia colimore sensitive to the bactericidal antibiotic gentamicin (Gm), and proteomic analysis suggested involvement of a weakened antioxidant defense. Use of the psfiAgenetic reporter, 3′-(p-hydroxyphenyl) fluorescein (HPF) dye, and Amplex Red showed that Gm generated more reactive oxygen species (ROS) in the mutant. HPF measurements can be distorted by cell elongation, but Gm did not affect stationary-phase cell dimensions. Coadministration of the antioxidantN-acetyl cysteine (NAC) decreased drug lethality particularly in the mutant, as did Gm treatment under anaerobic conditions that prevent ROS formation. Greater oxidative stress, due to insufficient quenching of endogenous ROS and/or respiration-linked electron leakage, therefore contributed to the greater sensitivity of the mutant; infection by a uropathogenic strain in mice showed this to be the case alsoin vivo. Disruption of antioxidant defense by eliminating the quencher proteins, SodA/SodB and KatE/SodA, or the pentose phosphate pathway proteins, Zwf/Gnd and TalA, which provide NADPH for ROS decomposition, also generated greater oxidative stress and killing by Gm. Thus, besides its established mode of action, Gm also kills stationary-phase bacteria by generating oxidative stress, and targeting the antioxidant defense ofE. colican enhance its efficacy. Relevant aspects of the current controversy on the role of ROS in killing by bactericidal drugs of exponential-phase bacteria, which represent a different physiological state, are discussed.


1998 ◽  
Vol 64 (11) ◽  
pp. 4533-4535 ◽  
Author(s):  
R. L. Buchanan ◽  
S. G. Edelson ◽  
K. Snipes ◽  
G. Boyd

ABSTRACT Three strains (932, Ent-C9490, and SEA13B88) of Escherichia coli O157:H7 were used to determine the effectiveness of low-dose gamma irradiation for eliminating E. coli O157:H7 from apple juice or cider and to characterize the effect of inducing pH-dependent, stationary-phase acid resistance on radiation resistance. The strains were grown in tryptic soy broth with or without 1% dextrose for 18 h to produce cells that were or were not induced to pH-dependent stationary-phase acid resistance. The bacteria were then transferred to clarified apple juice and irradiated at 2°C with a cesium-137 irradiator. Non-acid-adapted cells had radiationD values (radiation doses needed to decrease a microbial population by 90%) ranging from 0.12 to 0.21 kGy. D values increased to 0.22 to 0.31 kGy for acid-adapted cells. When acid-adapted SEA13B88 cells were tested in five apple juice brands having different levels of suspended solids (absorbances ranging from 0.04 to 2.01 at 550 nm), radiation resistance increased with increasing levels of suspended solids, with D values ranging from 0.26 to 0.35 kGy. Based on these results, a dose of 1.8 kGy should be sufficient to achieve the 5D inactivation of E. colirecommended by the National Advisory Committee for Microbiological Criteria for Foods.


2004 ◽  
Vol 67 (3) ◽  
pp. 583-590 ◽  
Author(s):  
E. D. BERRY ◽  
G. A. BARKOCY-GALLAGHER ◽  
G. R. SIRAGUSA

Stationary-phase acid resistance and the induction of acid resistance were assessed for recent bovine carcass isolates of Escherichia coli, including 39 serotype O157 strains and 20 non-O157 strains. When grown to stationary phase in the absence of glucose and without prior acid exposure, there was a range of responses to a pH challenge of 6 h at pH 2.5. However, populations of 53 of the 59 E. coli isolates examined were reduced by less than 2.00 log CFU/ml, and populations of 24 of these isolates were reduced by less than 1.00 log CFU/ml. In contrast, there was little variation in population reductions when the E. coli were grown with glucose and preadapted to acidic conditions. With few exceptions, acid adaptation improved survival to the acid challenge, with 57 of the 59 isolates exhibiting a log reduction of less than 0.50. Differences in acid resistance or the ability to adapt to acidic conditions between E. coli O157:H7 and non-O157 commensal E. coli were not observed. However, we did find that the E. coli O157 were disposed to greater acid injury after the low pH challenge than the non-O157 E. coli, both for cells that were and were not adapted to acidic conditions before the challenge. The enhancement of low pH survival after acid adaptation that was seen among these recent natural isolates of E. coli O157 further supports the idea that the previous environment of this pathogen should be a consideration when designing microbial safety strategies for foods preserved by low pH and acid.


2001 ◽  
Vol 67 (10) ◽  
pp. 4454-4457 ◽  
Author(s):  
Adriana Ferreira ◽  
Conor P. O'Byrne ◽  
Kathryn J. Boor

ABSTRACT To determine the contribution of sigma B (ςB) to survival of stationary-phase Listeria monocytogenescells following exposure to environmental stresses, we compared the viability of strain 10403S with that of an isogenic nonpolarsigB null mutant strain after exposure to heat (50°C), ethanol (16.5%), or acid (pH 2.5). Strain viabilities were also determined under the same conditions in cultures that had been previously exposed to sublethal levels of the same stresses (45°C, 5% ethanol, or pH 4.5). The ΔsigB and wild-type strains had similar viabilities following exposure to ethanol and heat, but the ΔsigB strain was almost 10,000-fold more susceptible to lethal acid stress than its parent strain. However, a 1-h preexposure to pH 4.5 yielded a 1,000-fold improvement in viability for the ΔsigB strain. These results suggest the existence in L. monocytogenes of both a ςB-dependent mechanism and a pH-dependent mechanism for acid resistance in the stationary phase. ςB contributed to resistance to both oxidative stress and carbon starvation inL. monocytogenes. The ΔsigB strain was 100-fold more sensitive to 13.8 mM cumene hydroperoxide than the wild-type strain. Following glucose depletion, the ΔsigB strain lost viability more rapidly than the parent strain. ςB contributions to viability during carbon starvation and to acid resistance and oxidative stress resistance support the hypothesis that ςB plays a role in protecting L. monocytogenes against environmental adversities.


Sign in / Sign up

Export Citation Format

Share Document