Leukocyte recruitment induced by snake venom metalloproteinases: Role of the catalytic domain

2020 ◽  
Vol 521 (2) ◽  
pp. 402-407
Author(s):  
Bianca Cestari Zychar ◽  
Patrícia Bianca Clissa ◽  
Eneas Carvalho ◽  
Cristiani Baldo ◽  
Luis Roberto C. Gonçalves
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sonia Selbonne ◽  
Celina Madjene ◽  
Benjamin Salmon ◽  
Yacine Boulaftali ◽  
Marie-Christine Bouton ◽  
...  

AbstractWe previously identified the inhibitory serpin protease nexin-1 (PN-1) as an important player of the angiogenic balance with anti-angiogenic activity in physiological conditions. In the present study, we aimed to determine the role of PN-1 on pathological angiogenesis and particularly in response to ischemia, in the mouse model induced by femoral artery ligation. In wild-type (WT) muscle, we observed an upregulation of PN-1 mRNA and protein after ischemia. Angiography analysis showed that femoral artery perfusion was more rapidly restored in PN-1−/− mice than in WT mice. Moreover, immunohistochemistry showed that capillary density increased following ischemia to a greater extent in PN-1−/− than in WT muscles. Moreover, leukocyte recruitment and IL-6 and MCP-1 levels were also increased in PN-1−/− mice compared to WT after ischemia. This increase was accompanied by a higher overexpression of the growth factor midkine, known to promote leukocyte trafficking and to modulate expression of proinflammatory cytokines. Our results thus suggest that the higher expression of midkine observed in PN-1- deficient mice can increase leukocyte recruitment in response to higher levels of MCP-1, finally driving neoangiogenesis. Thus, PN-1 can limit neovascularisation in pathological conditions, including post-ischemic reperfusion of the lower limbs.


1997 ◽  
Vol 233 (3) ◽  
pp. 713-716 ◽  
Author(s):  
Chi-Yue Wu ◽  
Wan-Chen Chen ◽  
Chewn-Lang Ho ◽  
Shui-Tein Chen ◽  
Kung-Tsung Wang

Author(s):  
Arvind Kumar Gupta ◽  
Debashree Behera ◽  
Balasubramanian Gopal

The crystal structure of Mycobacterium tuberculosis high-temperature requirement A (HtrA) protein was determined at 1.83 Å resolution. This membrane-associated protease is essential for the survival of M. tuberculosis. The crystal structure reveals that interactions between the PDZ domain and the catalytic domain in HtrA lead to an inactive conformation. This finding is consistent with its proposed role as a regulatory protease that is conditionally activated upon appropriate environmental triggers. The structure provides a basis for directed studies to evaluate the role of this essential protein and the regulatory pathways that are influenced by this protease.


Toxicon ◽  
2006 ◽  
Vol 47 (5) ◽  
pp. 549-559 ◽  
Author(s):  
Cristina Maria Fernandes ◽  
Stella Regina Zamuner ◽  
Juliana Pavan Zuliani ◽  
Alexandra Rucavado ◽  
José Maria Gutiérrez ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e93741 ◽  
Author(s):  
Elbio Leiguez ◽  
Karina Cristina Giannotti ◽  
Vanessa Moreira ◽  
Márcio Hideki Matsubara ◽  
José María Gutiérrez ◽  
...  

2008 ◽  
Vol 7 (3) ◽  
pp. 509-517 ◽  
Author(s):  
Jacob Lorenzo-Morales ◽  
Jarmila Kliescikova ◽  
Enrique Martinez-Carretero ◽  
Luis Miguel De Pablos ◽  
Bronislava Profotova ◽  
...  

ABSTRACT Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer.


1989 ◽  
Vol 106 (3) ◽  
pp. 518-527 ◽  
Author(s):  
Keizo Teshima ◽  
Yutaka Kitagawa ◽  
Yuji Samejima ◽  
Saju Kawauchi ◽  
Shinobu Fujii ◽  
...  

2003 ◽  
Vol 285 (5) ◽  
pp. L996-L1005 ◽  
Author(s):  
Rainer Kiefmann ◽  
Kai Heckel ◽  
Martina Dörger ◽  
Sonja Schenkat ◽  
Mechthild Stoeckelhuber ◽  
...  

During systemic inflammation, recruitment and activation of leukocytes in the pulmonary microcirculation may result in a potentially life-threatening acute lung injury. We elucidated the role of the poly(ADP-ribose) synthetase (PARS), a nucleotide-polymerizing enzyme, in the regulation of leukocyte recruitment within the lung with regard to the localization in the pulmonary microcirculation and in correlation to hemodynamics in the respective vascular segments and expression of intercellular adhesion molecule 1 during endotoxemia. Inhibition of PARS by 3-aminobenzamide reduced the endotoxin-induced leukocyte recruitment within pulmonary arterioles, capillaries, and venules in rabbits as quantified by in vivo fluorescence microscopy. Microhemodynamics and thus shear rates in all pulmonary microvascular segments remained constant. Simultaneously, inhibition of PARS with 3-aminobenzamide suppressed the endotoxin-induced adhesion molecules expression as demonstrated for intercellular adhesion molecule 1 by immunohistochemistry and Western blot analysis. We confirmed this result with the use of PARS knockout mice. The inhibitory effect of 3-aminobenzamide on leukocyte recruitment was associated with a reduction of pulmonary capillary leakage and edema formation. We first provide evidence that PARS activation mediates the leukocyte sequestration in pulmonary microvessels through upregulation of adhesion molecules. As reactive oxygen species released from leukocyte are supposed to cause an upregulation of adhesion molecules we conclude that PARS inhibition contributes to termination of this vicious cycle and inhibits the inflammatory process.


Sign in / Sign up

Export Citation Format

Share Document