The reductive carboxylation activity of heterotetrameric pyruvate synthases from hyperthermophilic archaea

Author(s):  
Lu Xiao ◽  
Guoxia Liu ◽  
Fuyu Gong ◽  
Zhen Cai ◽  
Yin Li
Archaea ◽  
2005 ◽  
Vol 1 (5) ◽  
pp. 293-301 ◽  
Author(s):  
Wakao Fukuda ◽  
Yulia Sari Ismail ◽  
Toshiaki Fukui ◽  
Haruyuki Atomi ◽  
Tadayuki Imanaka

Although the interconversion between C4 and C3 compounds has an important role in overall metabolism, limited information is available on the properties and regulation of enzymes acting on these metabolites in hyperthermophilic archaea. Malic enzyme is one of the enzymes involved in this interconversion, catalyzing the oxidative decarboxylation of malate to pyruvate as well as the reductive carboxylation coupled with NAD(P)H. This study focused on the enzymatic properties and expression profile of an uncharacterized homolog of malic enzyme identified in the genome of a heterotrophic, hyperthermophilic archaeonT hermococcus kodakaraensisKOD1 (Tk-Mae). The amino acid sequence ofTk-Mae was 52–58% identical to those of malic enzymes from bacteria, whereas the similarities to the eukaryotic homologs were lower. Several catalytically important regions and residues were conserved in the primary structure ofTk-Mae. The recombinant protein, which formed a homodimer, exhibited thermostable malic enzyme activity with strict divalent cation dependency. The enzyme preferred NADP+rather than NAD+, but did not catalyze the decarboxylation of oxaloacetate, unlike the usual NADP-dependent malic enzymes. The apparent Michaelis constant (Km) ofTk-Mae for malate (16.9 mM) was much larger than those of known enzymes, leading to no strong preference for the reaction direction. Transcription of the gene encodingTk-Mae and intracellular malic enzyme activity inT. kodakaraensiswere constitutively weak, regardless of the growth substrates. Possible roles ofTk-Mae are discussed based on these results and the metabolic pathways ofT. kodakaraensisdeduced from the genome sequence.


Author(s):  
Ryushi Kawakami ◽  
Chinatsu Kinoshita ◽  
Tomoki Kawase ◽  
Mikio Sato ◽  
Junji Hayashi ◽  
...  

Abstract The amino acid sequence of the OCC_10945 gene product from the hyperthermophilic archaeon Thermococcus litoralis DSM5473, originally annotated as γ-aminobutyrate aminotransferase, is highly similar to that of the uncharacterized pyridoxal 5ʹ-phosphate (PLP)-dependent amino acid racemase from Pyrococcus horikoshii. The OCC_10945 enzyme was successfully overexpressed in Escherichia coli by co-expression with a chaperone protein. The purified enzyme demonstrated PLP-dependent amino acid racemase activity primarily toward Met and Leu. Although PLP contributed to enzyme stability, it only loosely bound to this enzyme. Enzyme activity was strongly inhibited by several metal ions, including Co2+ and Zn2+, and non-substrate amino acids such as l-Arg and l-Lys. These results suggest that the underlying PLP-binding and substrate recognition mechanisms in this enzyme are significantly different from those of the other archaeal and bacterial amino acid racemases. This is the first description of a novel PLP-dependent amino acid racemase with moderate substrate specificity in hyperthermophilic archaea.


2001 ◽  
Vol 1 (1) ◽  
pp. 117-118 ◽  
Author(s):  
J. Yokozawa ◽  
Y. Nagaoka ◽  
T. Umehara ◽  
J. Iwaki ◽  
Y. Kawarabayasi ◽  
...  

2000 ◽  
Vol 38 (4) ◽  
pp. 684-693 ◽  
Author(s):  
Jocelyne DiRuggiero ◽  
Diane Dunn ◽  
Dennis L. Maeder ◽  
Rhonda Holley-Shanks ◽  
Jerome Chatard ◽  
...  

1969 ◽  
Vol 115 (4) ◽  
pp. 633-638 ◽  
Author(s):  
R. H. Villet ◽  
K. Dalziel

1. It was shown that dissolved CO2 and not HCO3− or H2CO3 is the primary substrate for reductive carboxylation with 6-phosphogluconate dehydrogenase from sheep liver. 2. The equilibrium constant of the reaction was measured in solutions of various ionic strengths and at several temperatures, and the free energy and heat of reaction were determined.


1971 ◽  
Vol 121 (3) ◽  
pp. 431-437 ◽  
Author(s):  
Milton J. Allison ◽  
J. L. Peel

1. Growing cultures of Peptostreptococcus elsdenii and Bacteroides ruminicola incorporate 14C from [1-14C]isobutyrate into the valine of cell protein. With P. elsdenii some of the 14C is also incorporated into leucine. 2. Crude cell-free extracts of both organisms in the presence of glutamine, carbon dioxide and suitable sources of energy and electrons incorporate 14C from [1-14C]isobutyrate into valine but not into leucine. 3. With extracts of P. elsdenii treated with DEAE-cellulose the reaction is dependent on ATP, CoA, thiamin pyrophosphate, molecular hydrogen and a low-potential electron carrier (ferredoxin, flavodoxin or benzyl viologen). 4. The same extracts incorporate 14C from NaH14CO3 into valine in the presence of isobutyrate plus ATP, CoA, glutamine and ferredoxin; isobutyryl-CoA or isobutyryl phosphate plus CoA will replace the isobutyrate plus CoA and ATP. With acetyl phosphate in place of isobutyryl phosphate, 14C is incorporated into alanine. With isovalerate or 2-methylbutyrate in place of isobutyrate, 14C is incorporated into leucine and isoleucine respectively. 5. When carrier 2-oxoisovalerate is added to the carboxylating system 14C from [1-14C]isobutyrate passes into the oxo acid fraction. 6. It is concluded that these two organisms form valine from isobutyrate by the sequence isobutyrate→isobutyryl-CoA→2-oxoisovalerate→valine and that the reductive carboxylation of isobutyrate is catalysed by a system similar to the pyruvate synthetase of clostridia and photosynthetic bacteria.


Sign in / Sign up

Export Citation Format

Share Document