7-phenoxytacrine is a dually acting drug with neuroprotective efficacy in vivo

2021 ◽  
Vol 186 ◽  
pp. 114460 ◽  
Author(s):  
Martina Kaniakova ◽  
Jan Korabecny ◽  
Kristina Holubova ◽  
Lenka Kleteckova ◽  
Marketa Chvojkova ◽  
...  
2003 ◽  
Vol 228 (7) ◽  
pp. 823-835 ◽  
Author(s):  
Lixia Zhao ◽  
Shuhua Chen ◽  
Roberta D. Brinton

Epidemiological data from retrospective and case–control studies have indicated that estrogen replacement therapy can decrease the risk of developing Alzheimer’s disease. In addition, estrogen replacement therapy has been found to promote neuronal survival both in vivo and in vitro. We have shown that conjugated equine estrogens (CEE), containing 238 different molecules composed of estrogens, progestins, and androgens, exerted neurotrophic and neuroprotective effects in cultured neurons. In the current study, we sought to determine whether a steroidal formulation of nine synthetic conjugated estrogens (SCE) chemically derived from soybean and yam extracts is as effective as the complex multisteroidal formulation of CEE. Analyses of the neuroprotective efficacy indicate that SCE exhibited significant neuroprotection against beta amyloid, hydrogen peroxide, and glutamate-induced toxicity in cultured hippocampal neurons. Indices of neuroprotection included an increase in neuronal survival, a decrease in neurotoxin-induced lactate dehydrogenase release, and a reduction in neurotoxin-induced apoptotic cell death. Furthermore, SCE was found to attenuate excitotoxic glutamate-induced [Ca2+]i rise. Quantitative analyses indicate that the neuroprotective efficacy of SCE was comparable to that of the multisteroidal CEE formulation. Data derived from these investigations predict that SCE could exert neuroprotective effects comparable to CEE in vivo and therefore could reduce the risk of Alzheimer’s disease in postmenopausal women.


2020 ◽  
Vol 12 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Zhuang Zhang ◽  
Meng Zhong ◽  
Jun Wang ◽  
Dongjian Xia ◽  
Jinsuo Bao

Baicalein is one of the chief flavones extracted from Scutellariabaicalensis georgi which was earlier reported for its neuroprotective efficacy against Parkinson's disease (PD). In the present study, a simple and efficient synthetic procedure for the preparation of CeO2NPs using Ce(NO3)3 as a primary precursor and baicalein as a stabilizing agent was proposed. Further, the neuroprotective response of baicalein stabilized CeO2 NPs against rotenone-stimulated parkinsonian diseased mice has been explored both in-vitro and in-vivo. From the experimental findings, it was also evident that baicalein exposure has enhanced the motor impairments, and hindered the pro-inflammatory cytokine release and blocked the NF-κB along with MAPK signaling pathway in rotenone-stimulated PD rat models.


2007 ◽  
Vol 1149 ◽  
pp. 181-190 ◽  
Author(s):  
Yuko Muramatsu ◽  
Yasuhisa Furuichi ◽  
Nobuteru Tojo ◽  
Akira Moriguchi ◽  
Takuya Maemoto ◽  
...  

2009 ◽  
Vol 29 (3) ◽  
pp. 653-668 ◽  
Author(s):  
B. Beirowski ◽  
E. Babetto ◽  
J. Gilley ◽  
F. Mazzola ◽  
L. Conforti ◽  
...  

2006 ◽  
Vol 320 (3) ◽  
pp. 1087-1096 ◽  
Author(s):  
Akinori Iwashita ◽  
Yuko Muramatsu ◽  
Takao Yamazaki ◽  
Masakazu Muramoto ◽  
Yasuhiro Kita ◽  
...  

2021 ◽  
Author(s):  
Eda Bozdemir ◽  
Fabio A Vigil ◽  
Sang H Chun ◽  
Liliana Espinoza ◽  
Vladislav Bugay ◽  
...  

Abstract Background: Traumatic brain injury (TBI) remains one of the greatest public health concerns with increasing morbidity and mortality rates worldwide. Our group reported stimulation of astrocyte mitochondrial metabolism by P2Y1 receptor agonists significantly reduced cerebral edema and reactive gliosis in a TBI model. Subsequent data on the pharmacokinetics (PK) and rapid metabolism of these compounds suggested neuroprotection was likely mediated by a metabolite, AST-004, which binding data indicated was an adenosine A3 receptor (A3R) agonist. Methods: The neuroprotective efficacy of AST-004 was tested in a controlled closed cortical injury (CCCI) model of TBI in mice. Results: Twenty-four (24) hours post-injury, mice subjected to CCCI and treated with AST-004 (0.22mg/kg) exhibited significantly less secondary brain injury. These effects were quantified with less cell death (PSVue794 fluorescence) and loss of blood brain barrier breakdown (Evans Blue extravasation assay), compared to vehicle treated TBI mice. TBI treated mice also exhibited significantly reduced neuroinflammatory markers, glial-fibrillary acidic protein (GFAP, astrogliosis) and ionized Ca2+ binding adaptor molecule 1 (Iba1, microgliosis), both at the mRNA (gRT-PCR) and protein (western blot and immunofluorescence) levels, respectively. Four (4) weeks post-injury, AST-004 treated TBI mice presented significantly reduced impairment of long-term memory. Spatial memory was assessed with a contextual fear conditioning behavior assay (freezing behavior after shock). Finally, AST-004 treatments were found to increase in vivo ATP production in astrocytes (gfap-targeted luciferase activity), consistent with the proposed mechanism of action. Conclusions: These data reveal AST-004 as a novel A3R agonist that increases astrocyte energy production and enhances their neuroprotective efficacy after brain injury.


Author(s):  
S. Phyllis Steamer ◽  
Rosemarie L. Devine

The importance of radiation damage to the skin and its vasculature was recognized by the early radiologists. In more recent studies, vascular effects were shown to involve the endothelium as well as the surrounding connective tissue. Microvascular changes in the mouse pinna were studied in vivo and recorded photographically over a period of 12-18 months. Radiation treatment at 110 days of age was total body exposure to either 240 rad fission neutrons or 855 rad 60Co gamma rays. After in vivo observations in control and irradiated mice, animals were sacrificed for examination of changes in vascular fine structure. Vessels were selected from regions of specific interest that had been identified on photomicrographs. Prominent ultrastructural changes can be attributed to aging as well as to radiation treatment. Of principal concern were determinations of ultrastructural changes associated with venous dilatations, segmental arterial stenosis and tortuosities of both veins and arteries, effects that had been identified on the basis of light microscopic observations. Tortuosities and irregularly dilated vein segments were related to both aging and radiation changes but arterial stenosis was observed only in irradiated animals.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Sign in / Sign up

Export Citation Format

Share Document