High hydrostatic pressure refolding of highly hydrophobic protein: a case study of recombinant human interferon β-1b from inclusion bodies

2021 ◽  
pp. 108055
Author(s):  
Qi Wang ◽  
Chun Zhang ◽  
Zenglan Li ◽  
Fangxia Guo ◽  
Jing Zhang ◽  
...  
2008 ◽  
Vol 379 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Rosa Maria Chura-Chambi ◽  
Luis Antonio Genova ◽  
Regina Affonso ◽  
Ligia Morganti

2020 ◽  
Vol 10 (2) ◽  
pp. 233-238
Author(s):  
Samira Nekoufar ◽  
Ahmad Fazeli ◽  
Mohammad Reza Fazeli

Purposes: Solubilization of inclusion bodies expressed in E. coli is a critical step during manufacturing of recombinant proteins expressed as inclusion bodies. So far, various methods have been used for solubilization and purification of inclusion body proteins to obtain active proteins with high purity and yield. The aim of this study was to examine the benefit of organic solvents such as alcohols in solubilization of recombinant interferon β-1b inclusion bodies. Methods: Effect of important parameters inclusion pH, concentration and type of denaturant and concentration of alcoholic solvents were optimized to formulate a suitable solubilization buffer and investigate their effect on solubilization of interferon β-1b inclusion bodies. Results: Our findings showed the acidic pH in the range of 2-3 is more suitable than alkaline pH >12 for solubilization and achieving higher content of interferon β-1beta and pure recombinant protein. We have also demonstrated that 1% SDS acts better than 2M urea to solubilize Inclusion body proteins of interferon β-1b at pH of 2-3. The interferon concentration was 2.35 mg per 100 mg IB when we used 40% (v/v) 1-propanol and 20% (v/v) 2-butanol into the buffer solution as well. Conclusion: The optimized method provides gentile condition for solubilization of inclusion body at high protein concentration and purity with a degree of retention of native secondary structure which makes this method valuable to be used in production and research area.


2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Rosa Maria Chura Chambi ◽  
Laura Simone Lemke ◽  
Natália Malavasi Vallejo ◽  
Luiz Juliano Neto ◽  
Ligia Morganti

2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


2010 ◽  
Vol 37 (6) ◽  
pp. 641-645 ◽  
Author(s):  
Can-Xin XU ◽  
Chun WANG ◽  
Bing-Yang ZHU ◽  
Zhi-Ping GAO ◽  
Di-Xian LUO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document