high hydrostatic pressure processing
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 44)

H-INDEX

27
(FIVE YEARS 3)

Nutrients ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 219
Author(s):  
Eve Wemelle ◽  
Lucie Marousez ◽  
Marie de Lamballerie ◽  
Claude Knauf ◽  
Jean Lesage

Background: High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the sterilization of human breast milk (BM). HHP preserves numerous milk bioactive factors that are degraded by HoP, but no data are available for milk apelin and glucagon-like peptide 1 (GLP-1), two hormones implicated in the control of glucose metabolism directly and via the gut–brain axis. This study aims to determine the effects of HoP and HHP processing on apelin and GLP-1 concentrations in BM and to test the effect of oral treatments with HoP- and HHP-BM on intestinal contractions and glucose metabolism in adult mice. Methods: Mice were treated by daily oral gavages with HoP- or HHP-BM during one week before intestinal contractions, and glucose tolerance was assessed. mRNA expression of enteric neuronal enzymes known to control intestinal contraction was measured. Results: HoP-BM displayed a reduced concentration of apelin and GLP-1, whereas HHP processing preserved these hormones close to their initial levels in raw milk. Chronic HHP-BM administration to mice increased ileal mRNA nNos expression level leading to a decrease in gut contraction associated with improved glucose tolerance. Conclusion: In comparison to HoP, HPP processing of BM preserves both apelin and GLP-1 and improves glucose tolerance by acting on gut contractions. This study reinforces previous findings demonstrating that HHP processing provides BM with a higher biological value than BM treated by HoP.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2246
Author(s):  
Andressa Alves de Oliveira ◽  
Alexandre Guedes Torres ◽  
Daniel Perrone ◽  
Mariana Monteiro

Jussara (Euterpe edulis) fruit is a strong candidate for exportation due to its high content of anthocyanins. However, its rapid perishability impairs its potential for further economic exploration, highlighting the relevance of producing ready-to-drink juices by applying innovative processing, such as high hydrostatic pressure (HHP). The effect of HHP (200, 350, and 500 MPa for 5, 7.5, and 10 min) on anthocyanins content and antioxidant activity (AA) by FRAP and TEAC assays, and the most effective HHP condition on overall sensory acceptance and stability of jussara juice, were investigated. While mild pressurization (200 MPa for 5 min) retained anthocyanins and AA, 82% of anthocyanins content and 46% of TEAC values were lost at the most extreme pressurization condition (500 MPa for 10 min). The addition of 12.5% sucrose was the ideal for jussara juice consumer acceptance. No significant difference was observed for overall sensory acceptance scores of unprocessed (6.7) and HHP-processed juices (6.8), both juices being well-accepted. However, pressurization was ineffective in promoting the retention of anthocyanins and AA in jussara juice stored at refrigeration temperature for 60 days, probably due to enzymatic browning.


2021 ◽  
pp. 35-42
Author(s):  
M. Selvamuthukumaran ◽  
Nilesh Prakash Nirmal ◽  
Sajid Maqsood

2021 ◽  
Author(s):  
Josephine Ampofo ◽  
Michael Ngadi

In recent times, food consumption has advanced beyond simply meeting growth and development needs to include the supply of ingredients that can protect against diseases. Among such non-nutritive ingredients are phenolic compounds. These are benzene-ringed secondary metabolites produced in plants upon exposure to environmental stress. Previous studies have linked phenolic compounds to bioactive benefits (e.g., antioxidative, anti-inflammatory, and anti-cancer) with these bioactivities dependent on their biochemical structure and concentrations of individual phenolic compounds present in the food system. However, majority of plant foods are thermally processed into ready-to-eat forms, with these processing methods potentially altering the structure and subsequent bioactivities of endogenous phenolic compounds. Thus, the aim of this chapter is to highlight on emerging non-thermal novel technologies (such as pulsed electric field, radiation, ultrasonication, high hydrostatic pressure processing and high pressure carbon dioxide processing) that can be exploited by the food industry to preserve/enhance bioactivities of phenolic compounds during processing.


Sign in / Sign up

Export Citation Format

Share Document