scholarly journals Three-dimensional-engineered bioprinted in vitro human neural stem cell self-assembling culture model constructs of Alzheimer's disease

Author(s):  
Yi Zhang ◽  
Haiyan Chen ◽  
Xiaoyan Long ◽  
Tao Xu
2012 ◽  
Vol 8 (4S_Part_16) ◽  
pp. P577-P578
Author(s):  
Mathew Blurton-Jones ◽  
Rahasson Ager ◽  
Joy Nerhus ◽  
Andy Agazaryan ◽  
Stephen Huhn ◽  
...  

2020 ◽  
Author(s):  
Lauren A Apodaca ◽  
Al Anoud D Baddour ◽  
Camilo Garcia ◽  
Leila Alikhani ◽  
Erich Giedzinski ◽  
...  

Abstract Background: Regenerative therapies to mitigate Alzheimer’s disease (AD) neuropathology have shown very limited success. In the recent era, extracellular vesicles (EV) derived from multipotent and pluripotent stem cells have shown considerable promise for the treatment of dementia and many neurodegenerative conditions. Methods: Using the 5xFAD accelerated transgenic mouse model of AD, we now show the regenerative potential of human neural stem cell (hNSC)-derived EV on the neurocognitive and neuropathologic outcomes in the AD brain. Two or six-month-old 5xFAD mice received single or two intra-venous (retro-orbital vein, RO) injections of hNSC-derived EV, respectively.Results: RO treatment using hNSC-derived EV restored fear extinction memory consolidation and reduced anxiety-related behaviors 4-6 weeks post-injection. EV treatment also significantly reduced dense core amyloid-beta plaque accumulation and microglial activation in both age groups. These results correlated with partial restoration of homeostatic levels of circulating pro-inflammatory cytokines in the AD mice. Importantly, EV treatment protected against synaptic loss in the AD brain that paralleled improved cognition. MiRNA analysis of the EV cargo revealed promising candidates targeting neuroinflammation and synaptic function. Conclusions: Collectively, these data demonstrate the neuroprotective effects of systemic administration of stem cell-derived EV for remediation of behavioral and molecular AD neuropathologies.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lauren A. Apodaca ◽  
Al Anoud D. Baddour ◽  
Camilo Garcia ◽  
Leila Alikhani ◽  
Erich Giedzinski ◽  
...  

Abstract Background Regenerative therapies to mitigate Alzheimer’s disease (AD) neuropathology have shown very limited success. In the recent era, extracellular vesicles (EVs) derived from multipotent and pluripotent stem cells have shown considerable promise for the treatment of dementia and many neurodegenerative conditions. Methods Using the 5xFAD accelerated transgenic mouse model of AD, we now show the regenerative potential of human neural stem cell (hNSC)-derived EVs on the neurocognitive and neuropathologic hallmarks in the AD brain. Two- or 6-month-old 5xFAD mice received single or two intra-venous (retro-orbital vein, RO) injections of hNSC-derived EVs, respectively. Results RO treatment using hNSC-derived EVs restored fear extinction memory consolidation and reduced anxiety-related behaviors 4–6 weeks post-injection. EV treatment also significantly reduced dense core amyloid-beta plaque accumulation and microglial activation in both age groups. These results correlated with partial restoration of homeostatic levels of circulating pro-inflammatory cytokines in the AD mice. Importantly, EV treatment protected against synaptic loss in the AD brain that paralleled improved cognition. MiRNA analysis of the EV cargo revealed promising candidates targeting neuroinflammation and synaptic function. Conclusions Collectively, these data demonstrate the neuroprotective effects of systemic administration of stem cell-derived EVs for remediation of behavioral and molecular AD neuropathologies.


Life Sciences ◽  
2020 ◽  
Vol 254 ◽  
pp. 117772 ◽  
Author(s):  
Qingyue Liu ◽  
Yi Tan ◽  
Tingyu Qu ◽  
Jianhui Zhang ◽  
Xuexia Duan ◽  
...  

2011 ◽  
Vol 23 (1) ◽  
pp. 245
Author(s):  
V. J. Hall ◽  
J. Jakobsen ◽  
A. Gunnarsson ◽  
M. Schmidt ◽  
A. Lund Jørgensen ◽  
...  

Alzheimer’s disease is the most prevalent cause of dementia and afflicts ∼26 million people worldwide. There are currently no cures for this disease. Production of in vitro models of the disease would be extremely useful for studying disease mechanisms and for potential screening of novel drugs. In this study we produced 2 hemizygote and 2 homozygote embryonic stem cell-derived neural progenitor cell lines from Day 8 transgenic blastocysts carrying a human gene linked to early-onset Alzheimer’s disease [Swedish mutation of the amyloid precursor protein (hAPPsw)]. Following onset of spontaneous oestrus, a mating of hAPPsw± × hAPPsw± Göttingen transgenic progeny was performed. Eight days after the first of 2 matings, embryos were flushed from the tip of both cornuas of the gilt under surgical anaesthesia. A total of 6 blastocysts were obtained and 7 corpora lutei recorded. Blastocysts were transported for 4 h in porcine zygote medium 3 (PZM-3) in hypoxic, humidified conditions at 39°C to the cell laboratory. Compact epiblasts were mechanically isolated from the embryo using insulin needles and cultured on inactivated mouse embryonic fibroblasts in embryonic stem cell medium, supplemented with 20 ng mL–1 human recombinant basic fibroblast growth factor (Prospec) and 20 ng mL–1 human recombinant Activin A (Prospec), for a period of 5 days in hypoxic conditions at 39°C. Five of the 6 epiblasts expanded to form embryonic stem-cell-like outgrowth colonies. These were cut into small colonies and plated on MS5 murine stromal cells to induce spontaneous neural differentiation in DMEM medium containing 15% knockout serum replacement. Neuronal rosette-like structures were identified from Day 10 of differentiation onward. Six rosette structures were mechanically isolated from 4 outgrowths and plated in serum-free conditions on Matrigel-coated dishes. Two of the 6 lines failed to proliferate beyond passage 2. The 4 remaining cell lines have currently been cultured to passage 7. These lines were analysed at passage 5 by comparative real-time PCR and found to be positive for the neural progenitor markers VIMENTIN, SOX2, NESTIN PAX6, MUSASHI; other neural markers BETAIIITUBULIN and NCAM; and the astrocyte marker, GFAP. These lines were also subjected to analysis by immunocytochemistry and found to express SOX2, VIMENTIN, and NESTIN. Further genotyping by comparative real-time PCR using primers designed to target the hAPPsw gene revealed that 2 lines carried a single copy of hAPPsw and 2 lines carried 2 copies of hAPPsw. The expression levels of the hAPPsw transgene in these cell lines were determined using quantitative PCR. These cell lines are currently being investigated for their ability to differentiate into cholinergic neurons and for their expression of hyperphosphorylated TAU and β-Amyloid secretion. These cell lines will be potentially relevant for the in vitro study of amyloid precursor protein accumulation in neural cells and its role in cell death, as well as for potential screening of novel drugs for Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document