scholarly journals Do biodiversity-ecosystem functioning experiments inform stakeholders how to simultaneously conserve biodiversity and increase ecosystem service provisioning in grasslands?

2020 ◽  
Vol 245 ◽  
pp. 108552 ◽  
Author(s):  
Valentin H. Klaus ◽  
Mark J. Whittingham ◽  
András Báldi ◽  
Sönke Eggers ◽  
Richard M. Francksen ◽  
...  
2021 ◽  
Vol 759 ◽  
pp. 143467
Author(s):  
Jonathan P. Ritson ◽  
Danielle M. Alderson ◽  
Clare H. Robinson ◽  
Alexandra E. Burkitt ◽  
Andreas Heinemeyer ◽  
...  

2011 ◽  
Vol 11 (2) ◽  
pp. 676-687 ◽  
Author(s):  
Sven Lautenbach ◽  
Carolin Kugel ◽  
Angela Lausch ◽  
Ralf Seppelt

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 193
Author(s):  
Barbara Baraibar ◽  
Charles M. White ◽  
Mitchell C. Hunter ◽  
Denise M. Finney ◽  
Mary E. Barbercheck ◽  
...  

Cover crops are increasingly being adopted to provide multiple ecosystem services such as improving soil health, managing nutrients, and decreasing soil erosion. It is not uncommon for weeds to emerge in and become a part of a cover crop plant community. Since the role of cover cropping is to supplement ecosystem service provisioning, we were interested in assessing the impacts of weeds on such provisioning. To our knowledge, no research has examined how weeds in cover crops may impact the provision of ecosystem services and disservices. Here, we review services and disservices associated with weeds in annual agroecosystems and present two case studies from the United States to illustrate how weeds growing in fall-planted cover crops can provide ground cover, decrease potential soil losses, and effectively manage nitrogen. We argue that in certain circumstances, weeds in cover crops can enhance ecosystem service provisioning. In other circumstances, such as in the case of herbicide-resistant weeds, cover crops should be managed to limit weed biomass and fecundity. Based on our case studies and review of the current literature, we conclude that the extent to which weeds should be allowed to grow in a cover crop is largely context-dependent.


2020 ◽  
Vol 3 (1) ◽  
pp. 83
Author(s):  
Timothy Thrippleton ◽  
Clemens Blattert ◽  
Reinhard Mey ◽  
Jürgen Zell ◽  
Esther Thürig ◽  
...  

Forest management is becoming increasingly complex due to increasing demands in ecosystem service provisioning and future climate change impacts. For a sustainable forest management, scientifically well-founded decision support is therefore urgently required. Within the project SessFor, a decision support system for strategic planning at the forest enterprise level is being developed, based on the climate sensitive forest model SwissStandSim and initialized from forest inventory data. The system is currently applied to the forest enterprise Wagenrain (440 ha), located in the Swiss Plateau region. Indicators for biodiversity and ecosystem service provisioning (timber production, recreation value and carbon sequestration) are calculated for different management strategies and evaluated using a multi-criteria decision analysis. Preliminary results demonstrate the suitability of the system to evaluate ecosystem service provisioning under different management strategies and to identify the best management strategy, based on criteria defined by the forest manager. Furthermore, results show how the system can be used to assess developments for time-scales of 50–100 years under different climate change scenarios. In the ongoing project, the system will be applied to other case study regions, including mountain forests, which are of key importance in Switzerland and other alpine areas.


2019 ◽  
Author(s):  
Nicolas F. S-Gelais ◽  
Jean-François Lapierre ◽  
Robert Siron ◽  
Roxane Maranger

AbstractEcologists typically associate water quality with trophic status where oligotrophic ecosystems have excellent water quality and presumably provide more aquatic ecosystem services. However water quality is perceived differently among worldviews. Aquatic ecosystem service provisioning to the public health and agriculture sectors is determined using specific guidelines. But are these guidelines related to trophic status? Here, we developed an integrative ecosystem service framework using guideline thresholds for drinking, swimming, irrigation, suitability for livestock and aquatic wildlife in canadian rivers of varying trophic status. Drinkability was the most sensitive ecosystem service, met in 37% of cases, whereas livestock was the least, provided in 99%. Trophic status is a fair proxy for ecosystem services limited by fecal contamination as nutrients are related to human and animal populations, but not to those limited by metals. Using quantitative thresholds to assess the safe provisioning of multiple ecosystem services provides clear guidance for supporting resource management.In a nutshellWater quality is a commonly used term in management, but the metrics that determine whether a river can safely provide various aquatic ecosystem services differ among worldviews.We propose an integrative approach based on guideline thresholds to evaluate the frequency with which rivers are drinkable, swimmable, suitable for irrigation, livestock, and aquatic wildlife and compared this suitability with trophic status.Trophic status is a fair proxy for ecosystem services limited by fecal contamination, but not for those limited by metals.Using and developing more guideline thresholds provides a concrete way to assess ecosystem service provisioning that could help serve management.


2021 ◽  
Author(s):  
Renske Vroom ◽  
Jeroen Geurts ◽  
Reinder Nouta ◽  
Annieke Borst ◽  
Leon Lamers ◽  
...  

Abstract PurposePaludiculture (crop cultivation in wet peatlands) can prevent carbon and nutrient losses while enabling biomass production. As vegetation in rewetted peatlands is often nitrogen (N) limited, input of N rich water may promote biomass production and nutrient removal. However, it is unclear how N loading and soil characteristics affect biomass yield, nutrient dynamics, and ecosystem service provisioning in paludicultures. MethodsWe studied the influence of N loading (0, 50, 150, and 450 kg N ha-1 yr-1) on biomass production and nutrient sequestration of Typha latifolia (broadleaf cattail) and Phragmites australis (common reed) on a limed agricultural peat soil after rewetting. To assess the interaction with soil characteristics T. latifolia was also grown on a non-limed former agricultural soil.ResultsN loading stimulated biomass production and nutrient uptake of both T. latifolia and P. australis, with T. latifolia showing the most pronounced response. Biomass yield of T. latifolia was higher in the limed soil than in the non-limed soil due to a higher pH, despite lower nutrient availability. N was largely taken up by the vegetation, whereas bare soils showed N accumulation in pore and surface water, and 80% loss through denitrification. Phosphorus in the soil was efficiently taken up by T. latifolia, especially at high N loads.ConclusionN loading in paludicultures with T. latifolia and P. australis boosts biomass production while kick-starting peatland ecosystem services including nutrient removal. Nutrient availability and pH appear to be decisive soil characteristics when it comes to crop selection.


2022 ◽  
Author(s):  
◽  
Sheron Y. Luk

Coastal ecosystems provide key services that benefit human wellbeing yet are undergoing rapid degradation due to natural and anthropogenic pressures. This thesis seeks to understand how disturbances impact salt marsh and estuarine ecosystem functioning in order to refine their role in coastal ecosystem service delivery and predict future resilience. Salt marsh survival relative to sealevel rise increasingly relies on the accumulation and preservation of soil organic carbon (SOC). Firstly, I characterized SOC development and turnover in a New England salt marsh and found that salt marsh soils typically store marsh grass-derived compounds that are reworked over centuries-to-millennia. Next, I assessed how two common marsh disturbances – natural ponding and anthropogenic mosquito ditching – affect salt marsh carbon cycling and storage. Salt marsh ponds deepen through soil erosion and decomposition of long-buried marsh peat. Further, the SOC lost during pond development is not fully recouped once drained ponds are revegetated and virtually indistinguishable from the surrounding marsh. Mosquito ditches, which were installed in ~ 90% of New England salt marshes during the Great Depression, did not significantly alter marsh carbon storage. In Buzzards Bay, Massachusetts, a US National Estuary, we tested relationships among measures of estuarine water quality, recreational activity, and local socioeconomic conditions to understand how the benefits of cultural ecosystem services are affected by shifts in water quality associated with global change and anthropogenic activity. Over a 24-year period, water quality degradation coinciding with increases in Chlorophyll a is associated with declines in fishery abundance and cultural ecosystem service values ($0.08 – 0.67 million USD). In combination, incorporation of both anthropogenic and natural disturbances to coastal ecosystem functioning and service delivery can produce improved estimates of ecosystem service valuation for effective resource decision-making under future climate scenarios.


2013 ◽  
pp. 356-372
Author(s):  
Jane Kabubo-Mariara ◽  
Vincent Linderhof ◽  
Gideon Kruseman ◽  
Rosemary Atieno

Sign in / Sign up

Export Citation Format

Share Document