Corrigendum to “Prey killing without consumption: Does Macrolophus pygmaeus show adaptive foraging behaviour?” [Biological Control 47 (2008) 187–193]

2009 ◽  
Vol 48 (3) ◽  
pp. 323
Author(s):  
A.A. Fantinou ◽  
D.Ch. Perdikis ◽  
D.A. Maselou ◽  
P.D. Lambropoulos
2008 ◽  
Vol 47 (2) ◽  
pp. 187-193 ◽  
Author(s):  
A.A. Fantinou ◽  
D.Ch. Perdikis ◽  
D.A. Maselou ◽  
P.D. Lambropoulos

2013 ◽  
Vol 59 (2) ◽  
pp. 224-232 ◽  
Author(s):  
A. Law ◽  
N. Bunnefeld ◽  
N. J. Willby

Parasitology ◽  
1982 ◽  
Vol 84 (4) ◽  
pp. 241-268 ◽  
Author(s):  
J. K. Waage ◽  
M. P. Hassell

SUMMARYThis review begins with a description of the parasitoid life-style and the ecological and evolutionary factors which generate the remarkable diversity of insect parasitoids. We then describe the various ways that parasitoids have been used in the biological control of insect pests, and survey their success to date. The use of parasitoids remains largely an art, aided by past experience of success and failure. A more fundamental approach, involving basic research and theory, has not as yet contributed significantly to practical biological control. We explore the potential for such a science of parasitoid use and review basic research on parasitoid ecology and evolution which is of particular relevance to biological control. Mathematical models are used to identify and examine those parasitoid and host attributes which lead to successful biological control. Factors such as parasitoid foraging behaviour, fecundity, larval survival and sex ratio are shown to be important in influencing the depression of host populations and/or the stability of host–parasitoid interactions after depression. Multiple release is discussed and a model for inundative release of parasitoids is explored.


Author(s):  
Jana Eccard ◽  
Clara Ferreira ◽  
Andres Peredo Arce ◽  
Melanie Dammhahn

Foraging by consumers has direct effects on the community of their resource species, and may serve as a biotic filtering mechanism of diversity. Determinants of foraging behaviour may thus have cascading effects on abundance, diversity, and functional trait composition of the resource community. Here we propose giving-up diversity (GUDiv) as a novel concept and simple measure to quantify community effects of foraging at multiple spatial diversity scales. GUDiv provides a framework linking theories of adaptive foraging behaviour with community ecology. In experimental resource landscapes we showcase effects of patch residency of foraging wild rodents on α-GUDiv, ß-GUDiv and γ- GUDiv, and on functional trait composition of resources. Using GUDiv allows for prediction-based investigation of cascading indirect predation effects (ecology of fear) across multiple trophic levels, of feedbacks between functional trait composition of resource and consumer communities, and of effects of inter-individual differences among foragers on the diversity of resource communities.


2010 ◽  
Vol 70 (2) ◽  
pp. 435-442 ◽  
Author(s):  
RP. de Almeida ◽  
JC. van Lenteren ◽  
R Stouthamer

Unisexual Trichogramma forms have attracted much attention due to their potential advantages as biocontrol agents. Fitness studies have been performed and understanding the cost that Wolbachia may inflict on their hosts will help in deciding if Wolbachia infected (unisexual) forms are indeed better than sexual forms when used in biological control programmes. The influence of Wolbachia on the foraging behaviour (including walking activity and speed) of T. atopovirilia is reported in this paper. Temperature strongly affected T. atopovirilia female walking activity, but Wolbachia infected and uninfected females differed in none of the behavioural components that were measured such as walking activity and walking speed. Walking activity was highest at 25 ºC and differed significantly from that at 20 and 15 ºC. Trichogramma wasps were highly affected at 15 ºC. Behaviour analysis with females showed that female wasps spend most of the time on drilling + ovipositing on host eggs followed by host drumming and walking while drumming. The parasitism rate and number of offspring did not differ significantly between infected and cured Trichogramma females. Biological control implications of these findings are discussed.


1996 ◽  
Vol 86 (4) ◽  
pp. 397-405 ◽  
Author(s):  
S.T. Murphy ◽  
W. Völkl

AbstractThe Palaearctic pine aphids, Eulachnus agilis (Kaltenbach) and Eulachnus rileyi (Williams) have both been introduced into other continents where they have been reported causing damage to economically important pines. In Euorpe, they are attacked by the specialist parasitoid Diaeretus leucopterus (Haliday) which has been suggested as a possible biological control agent. Here we report on several aspects of the ecology of the parasitoid, conducted on E. agilis in Germany in 1993–94, to provide a more scientific basis for judging its potential for use in biological control. Parasitism of all instars in the field rarely exceeded 10% and was independent of host density. A high percentage of parasitized aphids were hyperparasitized. Measurements of the impact over 16 weeks in a greenhouse-release experiment showed that parasitism rates increased from 2 to 19% but were insufficient to suppress the aphid population below a damaging level. There was evidence of a density-dependent response. Studies on foraging behaviour showed that female parasitoids searched pines by quite extensive walks. There was no relationship between the number of aphids per tree and number of ovipositions, and the mean number of ovipositions per female per tree was 2.5 ± 0.4 eggs. The majority (55.1%) of encountered aphids did not respond to the parasitoids. However, female parasitoids attacked a much higher proportion of aphids that did respond but oviposition success on this group was poor. The number of aphid-infested needles on seedlings increased significantly owing to the parasitoid's foraging activity. On the basis of these results, it is suggested that D. leucopterus is only likely to be of benefit in biological control if used in conjunction with other complementary natural enemies.


2014 ◽  
Vol 281 (1776) ◽  
pp. 20132437 ◽  
Author(s):  
Zhiyuan Song ◽  
Marcus W. Feldman

Although pollinators can play a central role in determining the structure and stability of plant communities, little is known about how their adaptive foraging behaviours at the individual level, e.g. flower constancy, structure these interactions. Here, we construct a mathematical model that integrates individual adaptive foraging behaviour and population dynamics of a community consisting of two plant species and a pollinator species. We find that adaptive foraging at the individual level, as a complementary mechanism to adaptive foraging at the species level, can further enhance the coexistence of plant species through niche partitioning between conspecific pollinators. The stabilizing effect is stronger than that of unbiased generalists when there is also strong competition between plant species over other resources, but less so than that of multiple specialist species. This suggests that adaptive foraging in mutualistic interactions can have a very different impact on the plant community structure from that in predator–prey interactions. In addition, the adaptive behaviour of individual pollinators may cause a sharp regime shift for invading plant species. These results indicate the importance of integrating individual adaptive behaviour and population dynamics for the conservation of native plant communities.


2013 ◽  
Vol 86 (4) ◽  
pp. 859-866 ◽  
Author(s):  
Mu-Yun Wang ◽  
Thomas C. Ings ◽  
Michael J. Proulx ◽  
Lars Chittka

Sign in / Sign up

Export Citation Format

Share Document