scholarly journals Potential distribution of Bactrocera oleae and the parasitoids Fopius arisanus and Psyttalia concolor, aiming at classical biological control

2019 ◽  
Vol 132 ◽  
pp. 144-151 ◽  
Author(s):  
Fernanda Appel Müller ◽  
Naymã Pinto Dias ◽  
Marco Silva Gottschalk ◽  
Flávio Roberto Mello Garcia ◽  
Dori Edson Nava
2002 ◽  
Vol 92 (5) ◽  
pp. 423-429 ◽  
Author(s):  
X.G. Wang ◽  
R.H. Messing

AbstractCompetitive displacement of fruit fly parasitoids has been a serious issue in the history of fruit fly biological control in Hawaii. This concern regarding competitive risk of new parasitoids has led to an overall tightening of regulations against the use of classical biological control to manage fruit flies. Fopius arisanus (Sonan), an egg–larval parasitoid, is the most effective natural enemy of tephritid fruit flies in Hawaii. This study evaluated the competitive risk of two recently introduced larval parasitoids, Diachasmimorpha kraussii Fullaway and Psyttalia concolor (Szépligeti), to F. arisanus attacking the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Fopius arisanus won almost all intrinsic competitions against both larval parasitoids through physiological suppression of egg development. 83.3% of D. kraussii eggs and 80.2% of P. concolor eggs were killed within three days in the presence of F. arisanus larvae within the bodies of multi-parasitized hosts. The mechanism that F. arisanus employs to eliminate both larval parasitoids is similar to that it uses against three other early established larval fruit fly parasitoids: F. vandenboschi (Fullaway), D. longicaudata (Ashmead) and D. tryoni (Cameron). It suggests that introduction of these larval parasitoids poses minimal competitive risk to F. arisanus in Hawaii.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


Author(s):  
Fazila Yousuf ◽  
Peter A. Follett ◽  
Conrad P. D. T. Gillett ◽  
David Honsberger ◽  
Lourdes Chamorro ◽  
...  

AbstractPhymastichus coffea LaSalle (Hymenoptera:Eulophidae) is an adult endoparasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera:Curculionidae:Scolytinae), which has been introduced in many coffee producing countries as a biological control agent. To determine the effectiveness of P. coffea against H. hampei and environmental safety for release in Hawaii, we investigated the host selection and parasitism response of adult females to 43 different species of Coleoptera, including 23 Scolytinae (six Hypothenemus species and 17 others), and four additional Curculionidae. Non-target testing included Hawaiian endemic, exotic and beneficial coleopteran species. Using a no-choice laboratory bioassay, we demonstrated that P. coffea was only able to parasitize the target host H. hampei and four other adventive species of Hypothenemus: H. obscurus, H. seriatus, H. birmanus and H. crudiae. Hypothenemus hampei had the highest parasitism rate and shortest parasitoid development time of the five parasitized Hypothenemus spp. Parasitism and parasitoid emergence decreased with decreasing phylogenetic relatedness of the Hypothenemus spp. to H. hampei, and the most distantly related species, H. eruditus, was not parasitized. These results suggest that the risk of harmful non-target impacts is low because there are no native species of Hypothenemus in Hawaii, and P. coffea could be safely introduced for classical biological control of H. hampei in Hawaii.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana P. G. S. Wengrat ◽  
Aloisio Coelho Junior ◽  
Jose R. P. Parra ◽  
Tamara A. Takahashi ◽  
Luis A. Foerster ◽  
...  

AbstractThe egg parasitoid Telenomus remus (Hymenoptera: Scelionidae) has been investigated for classical and applied biological control of noctuid pests, especially Spodoptera (Lepidoptera: Noctuidae) species. Although T. remus was introduced into Brazil over three decades ago for classical biological control of S. frugiperda, this wasp has not been recorded as established in corn or soybean crops. We used an integrative approach to identify T. remus, combining a taxonomic key based on the male genitalia with DNA barcoding, using a cytochrome c oxidase subunit I mitochondrial gene fragment. This is the first report of natural parasitism of T. remus on S. frugiperda and S. cosmioides eggs at two locations in Brazil. We also confirmed that the T. remus lineage in Brazil derives from a strain in Venezuela (originally from Papua New Guinea and introduced into the Americas, Africa, and Asia). The occurrence of T. remus parasitizing S. frugiperda and S. cosmioides eggs in field conditions, not associated with inundative releases, suggests that the species has managed to establish itself in the field in Brazil. This opens possibilities for future biological control programs, since T. remus shows good potential for mass rearing and egg parasitism of important agricultural pests such as Spodoptera species.


Sign in / Sign up

Export Citation Format

Share Document