scholarly journals Chitosan hydrogel/3D-printed poly(ε‐caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment

Biomaterials ◽  
2021 ◽  
Vol 278 ◽  
pp. 121131
Author(s):  
Pinxue Li ◽  
Liwei Fu ◽  
Zhiyao Liao ◽  
Yu Peng ◽  
Chao Ning ◽  
...  
2018 ◽  
Vol 5 (2) ◽  
pp. 805-816
Author(s):  
Hongjie Huang ◽  
Xiaoqing Hu ◽  
Xin Zhang ◽  
Xiaoning Duan ◽  
Jiying Zhang ◽  
...  

Biomaterials ◽  
2006 ◽  
Vol 27 (26) ◽  
pp. 4573-4580 ◽  
Author(s):  
H FAN ◽  
Y HU ◽  
C ZHANG ◽  
X LI ◽  
R LV ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nurul Dinah Kadir ◽  
Zheng Yang ◽  
Afizah Hassan ◽  
Vinitha Denslin ◽  
Eng Hin Lee

Abstract Background Secretome profiles of mesenchymal stem cells (MSCs) are reflective of their local microenvironments. These biologically active factors exert an impact on the surrounding cells, eliciting regenerative responses that create an opportunity for exploiting MSCs towards a cell-free therapy for cartilage regeneration. The conventional method of culturing MSCs on a tissue culture plate (TCP) does not provide the physiological microenvironment for optimum secretome production. In this study, we explored the potential of electrospun fiber sheets with specific orientation in influencing the MSC secretome production and its therapeutic value in repairing cartilage. Methods Conditioned media (CM) were generated from MSCs cultured either on TCP or electrospun fiber sheets of distinct aligned or random fiber orientation. The paracrine potential of CM in affecting chondrogenic differentiation, migration, proliferation, inflammatory modulation, and survival of MSCs and chondrocytes was assessed. The involvement of FAK and ERK mechanotransduction pathways in modulating MSC secretome were also investigated. Results We showed that conditioned media of MSCs cultured on electrospun fiber sheets compared to that generated from TCP have improved secretome yield and profile, which enhanced the migration and proliferation of MSCs and chondrocytes, promoted MSC chondrogenesis, mitigated inflammation in both MSCs and chondrocytes, as well as protected chondrocytes from apoptosis. Amongst the fiber sheet-generated CM, aligned fiber-generated CM (ACM) was better at promoting cell proliferation and augmenting MSC chondrogenesis, while randomly oriented fiber-generated CM (RCM) was more efficient in mitigating the inflammation assault. FAK and ERK signalings were shown to participate in the modulation of MSC morphology and its secretome production. Conclusions This study demonstrates topographical-dependent MSC paracrine activities and the potential of employing electrospun fiber sheets to improve the MSC secretome for cartilage regeneration.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kangkang Zha ◽  
Xu Li ◽  
Zhen Yang ◽  
Guangzhao Tian ◽  
Zhiqiang Sun ◽  
...  

AbstractArticular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.


2013 ◽  
Vol 815 ◽  
pp. 345-349 ◽  
Author(s):  
Ching Wen Hsu ◽  
Ping Liu ◽  
Song Song Zhu ◽  
Feng Deng ◽  
Bi Zhang

Here we reported a combined technique for articular cartilage repair, consisting of bone arrow mesenchymal stem cells (BMMSCs) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers carried with tissue growth factor (TGF-belat1). In the present study, BMMSCs seeded on PLGA-PEG-PLGA with were incubated in vitro, carried or not TGF-belta1, Then the effects of the composite on repair of cartilage defect were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) in the patellar groove were either left empty (n=18), implanted with BMMSCs/PLGA (n=18), TGF-belta1 modified BMMSCs/PLGA-PEG-PLGA. The defect area was examined grossly, histologically at 6, 24 weeks postoperatively. After implantation, the BMMSCs /PLGA-PEG-PLGA with TGF-belta1 group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology. These findings suggested that a combination of BMMSCs/PLGA-PEG-PLGA carried with tissue growth factor (TGF-belat1) may be an alternative treatment for large osteochondral defects in high loading sites.


2017 ◽  
Vol 3 (4) ◽  
pp. 045005 ◽  
Author(s):  
Natasha Maurmann ◽  
Daniela P Pereira ◽  
Daniela Burguez ◽  
Frederico D A de S Pereira ◽  
Paulo Inforçatti Neto ◽  
...  

2015 ◽  
Vol 16 (4) ◽  
pp. 045001 ◽  
Author(s):  
Jian-Feng Pan ◽  
Shuo Li ◽  
Chang-An Guo ◽  
Du-Liang Xu ◽  
Feng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document