The harvest of oilseed rape (Brassica napus L.): The effective yield losses at on-farm scale in the Italian area

2012 ◽  
Vol 46 ◽  
pp. 453-458 ◽  
Author(s):  
Luigi Pari ◽  
Alberto Assirelli ◽  
Alessandro Suardi ◽  
Vincenzo Civitarese ◽  
Angelo Del Giudice ◽  
...  
2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
L. Pari ◽  
A. Assirelli ◽  
A. Suardi ◽  
V. Civitarese ◽  
A. Del Giudice ◽  
...  

In the Italian environments, the rapeseed (Brassica napus L.) is subjected, at ripening, to a seed shattering causing significant losses that reduce the yield and increase the oilseed rape seedbank in the soil. Meteorological events and mechanical harvesting are the main factors affecting the extent of seed dispersal. Lacking the availability of works investigating the actual losses during the harvest at large scale, the Consiglio per la sperimentazione e la ricerca in agricoltura, Unità di ricerca per l’ingegneria agraria (CRA-ING) has conducted a study in order to determine the effective seed losses at on-farm scale. The amount of losses of two combine headers, traditional for wheat and specific for oilseed rape harvest, was compared. The rapeseed header had a hydraulic sliding cut-bar and two vertical electric blade on both sides in order to reduce the pulling and tearing action between the cut-off plants and those still standing. The seed losses were evaluated before and during the harvesting by using plastic trays placed on the ground within the crop rows. The trays were arranged in a layout allowing the estimation of the seed losses of three different sectors of the combine headers. The results have demonstrated that, at farm level, the use of a specific oilseed rape header adapted and optimized for the crop requirements allows to obtain a level of seed losses (0,97% of total production), below the values reported in literature. For rapeseed, the higher losses are localized at the final parts of the head, where the plants are strictly intertwined.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2256 ◽  
Author(s):  
Dainius Steponavičius ◽  
Aurelija Kemzūraitė ◽  
Laimis Bauša ◽  
Ernestas Zaleckas

Shattering of pods of oilseed rape (Brassica napus L.) is a major cause of seed yield losses prior to and during harvesting. In order to reduce shattering, researchers have been engaged in the development of special preparations that are known as pod sealants (PS). Despite the fact that there are already developed and commercialized PSs that have only been effective on seed yield preservation under certain environmental conditions, there is still a need to create a more versatile and efficient PS. Currently, the most promising method of controlling pod shattering in oilseed rape is the application of our developed novel acrylic- and trisiloxane-based pod sealant (PS4). The effectiveness of PS4 and three commercial pod sealants (PS1, PS2, and PS3) was assessed in this comparative study. By spraying an oilseed rape crop with PS4, natural seed loss can be reduced by 20–70%, depending on the prevailing weather conditions, and loss of seeds during harvest can be reduced by more than three-fold compared with that by the control treatment. Thus, the overall results demonstrated that by applying a novel pod sealant (PS4) to oilseed rape crops 2 weeks before harvest can increase the net profit margin by €30–€150 ha−1. The life cycle assessment showed that during 2014–2016 oilseed rape cultivation, the largest effect on global warming emission (kg CO2 eq) reduction was experimental sealant PS4, i.e., approximately 17% compared to the control.


2017 ◽  
Vol 40 (9) ◽  
pp. 1300-1311
Author(s):  
Bo Liu ◽  
Tao Ren ◽  
Jianwei Lu ◽  
Xiaokun Li ◽  
Rihuan Cong ◽  
...  

2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


Planta ◽  
2004 ◽  
Vol 221 (3) ◽  
pp. 328-338 ◽  
Author(s):  
Jens Tilsner ◽  
Nina Kassner ◽  
Christine Struck ◽  
Gertrud Lohaus

1997 ◽  
Vol 150 (4) ◽  
pp. 414-419 ◽  
Author(s):  
Jeroen A. Wilmer ◽  
Johannes P.F.G. Helsper ◽  
Linus H.W. van der Plas

Sign in / Sign up

Export Citation Format

Share Document