Neuroprotective effect of liquiritin against neuropathic pain induced by chronic constriction injury of the sciatic nerve in mice

2017 ◽  
Vol 95 ◽  
pp. 186-198 ◽  
Author(s):  
Meng-Ting Zhang ◽  
Bing Wang ◽  
Yi-Na Jia ◽  
Ning Liu ◽  
Peng-Sheng Ma ◽  
...  
2020 ◽  
Vol 10 (10) ◽  
pp. 731
Author(s):  
Muhammad Faheem ◽  
Syed Hussain Ali ◽  
Abdul Waheed Khan ◽  
Mahboob Alam ◽  
Umair Ilyas ◽  
...  

The production and up-regulation of inflammatory mediators are contributing factors for the development and maintenance of neuropathic pain. In the present study, the post-treatment of synthetic 1,3,4 oxadiazole derivative (B3) for its neuroprotective potential in chronic constriction injury-induced neuropathic pain was applied. In-silico studies were carried out through Auto Dock, PyRx, and DSV to obtain the possible binding and interactions of the ligands (B3) with COX-2, IL-6, and iNOS. The sciatic nerve of the anesthetized rat was constricted with sutures 3/0. Treatment with 1,3,4-oxadiazole derivative was started a day after surgery and continued until the 14th day. All behavioral studies were executed on day 0, 3rd, 7th, 10th, and 14th. The sciatic nerve and spinal cord were collected for further molecular analysis. The interactions in the form of hydrogen bonding stabilizes the ligand target complex. B3 showed three hydrogen bonds with IL-6. B3, in addition to correcting paw posture/deformation induced by CCI, attenuates hyperalgesia (p < 0.001) and allodynia (p < 0.001). B3 significantly raised the level of GST and GSH in both the sciatic nerve and spinal cord and reduced the LPO and iNOS (p < 0.001). B3 attenuates the pathological changes induced by nerve injury, which was confirmed by H&E staining and IHC examination. B3 down-regulates the over-expression of the inflammatory mediator IL-6 and hence provides neuroprotective effects in CCI-induced pain. The results demonstrate that B3 possess anti-nociceptive and anti-hyperalgesic effects and thus minimizes pain perception and inflammation. The possible underlying mechanism for the neuroprotective effect of B3 probably may be mediated through IL-6.


2018 ◽  
Vol 43 (12) ◽  
pp. 2404-2422 ◽  
Author(s):  
Bing Wang ◽  
Guoxin Zhang ◽  
Mei Yang ◽  
Ning Liu ◽  
Yu-Xiang Li ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Prasad Neerati ◽  
Harika Prathapagiri

Abstract Background Chronic neuropathic pain syndrome is associated with impaired quality of life and is poorly manageable. Alpha lipoic acid (ALA) is a powerful antioxidant and showed its effectiveness on diabetic neuropathy and other acute peripheral nerve injuries but it was not evaluated in the chronic neuropathic pain, chronic constriction injury (CCI) in rat model by using duloxetine (DLX) as standard. Methodology The main objective of the study was to expedite ALA effect on chronic peripheral neuropathy induced by CCI of sciatic nerve in rats. In this study, male Wister rats were randomly divided into six groups (n = 8) including, normal saline, sham operated, surgery control, DLX 30mg/kg treated, ALA treated 25mg/kg, and ALA+DLX. The CCI of sciatic nerve was conducted on all animals except normal saline group and studied for 21 days (i.e. 14 days treatment period & 7 days treatment free period) by using different behavioral, biochemical and, histopathology studies. Results ALA showed minor but significant decrease of thermal hyperalgesia, cold allodynia, malondialdehyde (MDA), total protein, lipid peroxidation, and nitric oxide levels and significant increase of motor coordination, glutathione level and decreased axonal degeneration significantly. These effects sustained even during treatment free period. ALA enhanced the effect of DLX when given in combination by showing sustained effect. In conclusion, ALA acted as potent antioxidant may be this activity is responsible for the potent neuroprotective effect. Conclusion Hence, ALA attenuated the nueroinflammation mediated by chronic peripheral neuropathy. Further studies are warranted with ALA to develop as a clinically relevant therapeutic agent for the treatment of neuropathic pain.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Yung Tsung Li ◽  
Zong Ying Li ◽  
Meng I Hsueh ◽  
Hui Chun Hung ◽  
Hsiu Chung Ou ◽  
...  

2013 ◽  
Vol 1 (2) ◽  
pp. 76-81 ◽  
Author(s):  
Masoume Masoumipoor ◽  
Seyed Behnam Jameie ◽  
Atusa Janzadeh ◽  
Farinaz Nasirinezhad ◽  
Mahdie Kerdari ◽  
...  

Author(s):  
Saurabh Kohli ◽  
Taruna Sharma ◽  
Juhi Kalra ◽  
Dilip C. Dhasmana

Background: Neuropathic pain is associated with prolonged disability and is usually not responsive to conventional analgesics like NSAIDs and opioids. Even the recommended first-line drugs are effective in less than 50% patients. Thus, drugs with different mechanisms of action are needed. Baclofen, a GABA-B agonist has shown benefit in different types of neuropathic pains and is compared against pregabalin.Methods: The sciatic nerve was ligated in 2 groups of 6 rats each as per the chronic constriction injury model of neuropathic pain on day 0. After 14 days the effect of single doses of pregabalin (30mg/kg) and baclofen (5mg/kg) intraperitoneally were assessed over a 2 hours period. Thermal and mechanical hyperalgesia were assessed as measures of neuropathic pain by the hotplate and pin-prick method respectively.Results: Significant thermal and mechanical hyperalgesia was produced 14 days after sciatic nerve ligation in both the groups (p <0.05). Both pregabalin (p <0.001) and baclofen (p <0.01) were effective in decreasing thermal hyperalgesia throughout the two hours study period, but pregabalin was more effective as compared to baclofen (p <0.05) at 30, 60 and 120minutes. Both the drugs produced a significant decrease in mechanical hyperalgesia (p <0.01) throughout the study period. Again, pregabalin was the more effective drug (p <0.05) at all time points.Conclusions: Significant thermal and mechanical hyperalgesia was seen 14 days after sciatic nerve ligation. Both pregabalin and baclofen were effective in reversing the hyperalgesia, but pregabalin was the more effective of the two drugs at all time points.


Sign in / Sign up

Export Citation Format

Share Document