scholarly journals Liraglutide modulates olfactory ensheathing cell migration with activation of ERK and alteration of the extracellular matrix

2021 ◽  
Vol 141 ◽  
pp. 111819
Author(s):  
Yu-Ting Tseng ◽  
Mo Chen ◽  
Richard Lai ◽  
Francesca Oieni ◽  
Graham Smyth ◽  
...  
Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 135
Author(s):  
Pau Urdeitx ◽  
Mohamed H. Doweidar

Mechanical and electrical stimuli play a key role in tissue formation, guiding cell processes such as cell migration, differentiation, maturation, and apoptosis. Monitoring and controlling these stimuli on in vitro experiments is not straightforward due to the coupling of these different stimuli. In addition, active and reciprocal cell–cell and cell–extracellular matrix interactions are essential to be considered during formation of complex tissue such as myocardial tissue. In this sense, computational models can offer new perspectives and key information on the cell microenvironment. Thus, we present a new computational 3D model, based on the Finite Element Method, where a complex extracellular matrix with piezoelectric properties interacts with cardiac muscle cells during the first steps of tissue formation. This model includes collective behavior and cell processes such as cell migration, maturation, differentiation, proliferation, and apoptosis. The model has employed to study the initial stages of in vitro cardiac aggregate formation, considering cell–cell junctions, under different extracellular matrix configurations. Three different cases have been purposed to evaluate cell behavior in fibered, mechanically stimulated fibered, and mechanically stimulated piezoelectric fibered extra-cellular matrix. In this last case, the cells are guided by the coupling of mechanical and electrical stimuli. Accordingly, the obtained results show the formation of more elongated groups and enhancement in cell proliferation.


Development ◽  
1994 ◽  
Vol 120 (2) ◽  
pp. 425-432 ◽  
Author(s):  
X. Zhang ◽  
M.P. Sarras

Interstitial cell (I-cell) migration in hydra is essential for establishment of the regional cell differentiation pattern in the organism. All previous in vivo studies have indicated that cell migration in hydra is a result of cell-cell interactions and chemotaxic gradients. Recently, in vitro cell adhesion studies indicated that isolated nematocytes could bind to substrata coated with isolated hydra mesoglea, fibronectin and type IV collagen. Under these conditions, nematocytes could be observed to migrate on some of these extracellular matrix components. By modifying previously described hydra grafting techniques, two procedures were developed to test specifically the role of extracellular matrix components during in vivo I-cell migration in hydra. In one approach, the extracellular matrix structure of the apical half of the hydra graft was perturbed using beta-aminopropionitrile and beta-xyloside. In the second approach, grafts were treated with fibronectin, RGDS synthetic peptide and antibody to fibronectin after grafting was performed. In both cases, I-cell migration from the basal half to the apical half of the grafts was quantitatively analyzed. Statistical analysis indicated that beta-aminopropionitrile, fibronectin, RGDS synthetic peptide and antibody to fibronectin all were inhibitory to I-cell migration as compared to their respective controls. beta-xyloside treatment had no effect on interstitial cell migration. These results indicate the potential importance of cell-extracellular matrix interactions during in vivo I-cell migration in hydra.


Toxicon ◽  
2011 ◽  
Vol 58 (6-7) ◽  
pp. 509-517 ◽  
Author(s):  
Evilin Naname Komegae ◽  
Anderson Daniel Ramos ◽  
Ana Karina Oliveira ◽  
Solange Maria de Toledo Serrano ◽  
Mônica Lopes-Ferreira ◽  
...  

2018 ◽  
Vol 371 (1) ◽  
pp. 104-121 ◽  
Author(s):  
Rümeyza Bascetin ◽  
Lyvia Blay ◽  
Sabrina Kellouche ◽  
Franck Carreiras ◽  
Cédric R. Picot ◽  
...  

Development ◽  
1999 ◽  
Vol 126 (9) ◽  
pp. 1975-1984 ◽  
Author(s):  
M. Nagel ◽  
R. Winklbauer

The fibronectin fibril matrix on the blastocoel roof of the Xenopus gastrula contains guidance cues that determine the direction of mesoderm cell migration. The underlying guidance-related polarity of the blastocoel roof is established in the late blastula under the influence of an instructive signal from the vegetal half of the embryo, in particular from the mesoderm. Formation of an oriented substratum depends on functional activin and FGF signaling pathways in the blastocoel roof. Besides being involved in tissue polarization, activin and FGF also affect fibronectin matrix assembly. Activin treatment of the blastocoel roof inhibits fibril formation, whereas FGF modulates the structure of the fibril network. The presence of intact fibronectin fibrils is permissive for directional mesoderm migration on the blastocoel roof extracellular matrix.


Sign in / Sign up

Export Citation Format

Share Document