scholarly journals MAPK /ERK signaling pathway: A potential target for the treatment of intervertebral disc degeneration

2021 ◽  
Vol 143 ◽  
pp. 112170
Author(s):  
Hai-Jun Zhang ◽  
Hai-Yang Liao ◽  
Deng-Yan Bai ◽  
Zhi-Qiang Wang ◽  
Xing-Wen Xie
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jun Ge ◽  
Quan Zhou ◽  
Junjie Niu ◽  
Yingjie Wang ◽  
Qi Yan ◽  
...  

Melatonin, a neuroendocrine hormone secreted by the pineal body, has a positive effect on intervertebral disc degeneration. The present study is aimed at investigating the biological role of melatonin in intervertebral disc degeneration and its underlying mechanism. A human nucleus pulposus cell (NPC) line was exposed to melatonin at different concentrations. Cell proliferation was measured by CCK-8 assay. Cell cycle and apoptosis were analyzed by flow cytometry. Western blot was performed to measure the protein expression of indicated genes. A rabbit model of intervertebral disc degeneration was established to detect the role and mechanism of melatonin on intervertebral disc degeneration. Our study showed that melatonin promoted NPC viability and inhibited cell arrest. Furthermore, melatonin treatment led to the upregulation of collagen II and aggrecan and downregulation of collagen X. Moreover, melatonin significantly elevated the activity of the ERK signaling pathway. Inhibition of the ERK1/2 signals reversed the role of melatonin in the regulation of NPCs both in vitro and in vivo. Melatonin increased NPC viability through inhibition of cell cycle arrest and apoptosis. Moreover, melatonin promoted the secretion of functional factors influencing the nucleus pulposus cell physiology and retarded cell degeneration. Our results suggest that melatonin activated the ERK1/2 signaling pathway, thereby affecting the biological properties of the intervertebral disc degeneration.


2021 ◽  
Vol 12 ◽  
pp. 204173142110216
Author(s):  
Shaoqian Cui ◽  
Lei Zhang

Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been reported to deliver exogenous microRNAs (miRNAs or miRs) to reduce the progression of intervertebral disc degeneration (IDD). The purpose of the current study was to investigate the therapeutic potential of MSC-derived EVs delivering miR-129-5p in IDD. First, miR-129-5p expression levels were quantified in nucleus pulposus (NP) tissues of IDD patients. An IL-1β-induced NP cell model with IDD was then established, and co-cultured with EVs derived from MSCs that had been transfected with miR-129-5p mimic or inhibitor to elucidate the effects of miR-129-5p on cell viability, apoptosis, and ECM degradation. In addition, RAW264.7 cells were treated with the conditioned medium (CM) of NP cells. Next, the expression patterns of polarization markers and those of inflammatory factors in macrophages were detected using flow cytometry and ELISA, respectively. Lastly, rat models of IDD were established to validate the in vitro findings. It was found that miR-129-5p was poorly-expressed in NP tissues following IDD. Delivery of miR-129-5p to NP cells by MSC-derived EVs brought about a decrease in NP cell apoptosis, ECM degradation and M1 polarization of macrophages. Moreover, miR-129-5p directly-targeted LRG1, which subsequently promoted the activation of p38 MAPK signaling pathway, thus polarizing macrophages toward the M1 phenotype. Furthermore, MSC-derived EVs transferring miR-129-5p relieved IDD via inhibition of the LRG1/p38 MAPK signaling in vivo. Altogether, our findings indicated that MSC-derived EVs carrying miR-129-5p confer protection against IDD by targeting LRG1 and suppressing the p38 MAPK signaling pathway, offering a novel theranostic marker in IDD.


Sign in / Sign up

Export Citation Format

Share Document