scholarly journals Discharge of RVLM vasomotor neurons is not increased in anesthetized angiotensin II-salt hypertensive rats

2013 ◽  
Vol 305 (12) ◽  
pp. H1781-H1789 ◽  
Author(s):  
Gustavo R. Pedrino ◽  
Alfredo S. Calderon ◽  
Mary Ann Andrade ◽  
Sergio L. Cravo ◽  
Glenn M. Toney

Neurons of the rostral ventrolateral medulla (RVLM) are critical for generating and regulating sympathetic nerve activity (SNA). Systemic administration of ANG II combined with a high-salt diet induces hypertension that is postulated to involve elevated SNA. However, a functional role for RVLM vasomotor neurons in ANG II-salt hypertension has not been established. Here we tested the hypothesis that RVLM vasomotor neurons have exaggerated resting discharge in rats with ANG II-salt hypertension. Rats in the hypertensive (HT) group consumed a high-salt (2% NaCl) diet and received an infusion of ANG II (150 ng·kg−1·min−1 sc) for 14 days. Rats in the normotensive (NT) group consumed a normal salt (0.4% NaCl) diet and were infused with normal saline. Telemetric recordings in conscious rats revealed that mean arterial pressure (MAP) was significantly increased in HT compared with NT rats ( P < 0.001). Under anesthesia (urethane/chloralose), MAP remained elevated in HT compared with NT rats ( P < 0.01). Extracellular single unit recordings in HT ( n = 28) and NT ( n = 22) rats revealed that barosensitive RVLM neurons in both groups (HT, 23 cells; NT, 34 cells) had similar cardiac rhythmicity and resting discharge. However, a greater ( P < 0.01) increase of MAP was needed to silence discharge of neurons in HT (17 cells, 44 ± 5 mmHg) than in NT (28 cells, 29 ± 3 mmHg) rats. Maximum firing rates during arterial baroreceptor unloading were similar across groups. We conclude that heightened resting discharge of sympathoexcitatory RVLM neurons is not required for maintenance of neurogenic ANG II-salt hypertension.

2018 ◽  
Vol 48 (3) ◽  
pp. 1369-1381 ◽  
Author(s):  
Hong-Bao Li ◽  
Chan-Juan Huo ◽  
Qing Su ◽  
Xiang Li ◽  
Juan Bai ◽  
...  

Background/Aims: Exercise training (ExT) was associated with cardiovascular diseases including hypertension. The rostral ventrolateral medulla (RVLM) is a key region for central control of blood pressure and sympathetic nerve activity. Therefore, this study aimed to investigate the mechanisms within RVLM that can influence exercise training induced effects in salt-induced hypertension. Methods: Male Wistar rats were fed with a normal salt (0.3%) (NS) or a high salt (8%) (HS) diet for 12 weeks to induce hypertension. Then these rats were given moderate-intensity ExT for a period of 12 weeks. RVLM was used to determine glutamate and gamma-aminobutyric acid (HPLC), phosphorylated IKKβ, Fra-LI, 67-kDa isoform of glutamate decarboxylase (GAD67), proinflammatory cytokines (PIC) and NADPH-oxidase (NOX) subunits expression (Immunohistochemistry and Immunofluorescence, Western blotting). PIC and NF-κB p65 activity in the plasma were evaluated by ELISA studies. Renal sympathetic nerve activity (RSNA) was recorded and analyzed using the PowerLab system. Results: High salt diet resulted in increased mean arterial pressure and cardiac hypertrophy. These high salt diet rats had higher RVLM levels of glutamate, PIC, phosphorylated IKKβ, NF-κB p65 activity, Fra-LI, superoxide, NOX-2 (gp91phox) and 4, and lower RVLM levels of gamma-aminobutyric acid and GAD67, and higher plasma levels of PIC, norepinephrine, and higher RSNA. ExT attenuated these changes in salt-induced hypertensive rats. Conclusions: These findings suggest that high salt diet increases the activity of NF-κB and the levels of PIC and oxidative stress, and induces an imbalance between excitatory and inhibitory neurotransmitters in the RVLM. ExT attenuates hypertension and cardiac hypertrophy partially mediated by attenuating oxidative stress and modulating neurotransmitters in the RVLM.


2009 ◽  
Vol 297 (2) ◽  
pp. R396-R402 ◽  
Author(s):  
Fiona D. McBryde ◽  
Simon C. Malpas ◽  
Sarah-Jane Guild ◽  
Carolyn J. Barrett

The importance of dietary salt in the development of hypertension has long been a source of controversy. Recent studies suggest a combination of high-salt and ANG II infusion may increase sympathetic drive; however, the effect of a change in dietary salt alone is unclear. Using telemetry, we recorded renal sympathetic nerve activity (RSNA), arterial pressure (MAP), and heart rate (HR) in seven New Zealand white rabbits before and during a 6-day period of increased salt intake (normal NaCl 0.5 g·kg−1·day−1, high NaCl 2.5 g·kg−1·day−1) and a second group of seven rabbits with normal salt intake throughout. The responses to stressful stimuli encountered in the laboratory were recorded and compared with rest in control and high-salt groups. Resting MAP, HR, and RSNA were not significantly altered with high salt intake [88 ± 5 vs. 91 ± 6 mmHg; 251 ± 8 vs. 244 ± 9 beats per minute (bpm); 9.7 ± and 1.2 vs. 10.8 ± 1.7 normalized units (nu)] despite significant reductions in plasma renin activity (1.88 ± 0.18 vs. 1.27 ± 0.15 nmol ANG I·l−1·h−1; P < 0.05) and ANG II (7.5 ± 1.2 vs. 4.3 ± 0.8 pmol/l). Increasing levels of stressful stimuli (resting in home cage, containment in box, handling, and nasopharyngeal activation) in animals on a normal salt diet caused graded increases in MAP (89 ± 2 mmHg, 95 ± 2 mmHg, 107 ± 4 mmHg, and 122 ± 5 mmHg, respectively) and RSNA (9.7 ± 0.9 nu; 11.8 ± 2.7 nu; 31.4 ± 3.7 nu; 100 nu) but not HR (245 ± 8 bpm; 234 ± 8 bpm; 262 ± 9 bpm; 36 ± 5 bpm). High dietary salt did not significantly alter the responses to stress. We conclude that a 6-day period of high salt intake does not alter the level of RSNA, with non-neural mechanisms primarily responsible for the observed renin-angiotensin system suppression.


2011 ◽  
Vol 300 (6) ◽  
pp. H2214-H2220 ◽  
Author(s):  
Mitsuo Sobajima ◽  
Takashi Nozawa ◽  
Teruo Nakadate ◽  
Takuya Shida ◽  
Takashi Ohori ◽  
...  

The responses of sympathetic nerve activity to transient stress can be exaggerated in salt-sensitive (SS), hypertensive subjects. Cardiac and renal interstitial norepinephrine (iNE) levels during and after transient hypercapnia were investigated in conscious SS rats. Dahl SS and salt-resistant (SR) 6-wk-old rats were fed a high-salt diet, and at 12 wk iNE levels in the heart and kidney were determined using microdialysis with probes inserted in the left ventricular (LV) wall and kidney. A telemetry system determined blood pressure and heart rate (HR) in separate animals. After recovery from the operation, data were collected before, during, and after exposure to normoxic 10% CO2 for 25 min under unanesthetized conditions. The plasma NE concentrations at baseline did not differ between the two strains. Both cardiac and renal iNE levels were much higher in SS rats than in SR rats at baseline as well as during hypercapnic stress. After stress, the markedly increased iNE levels of SS rats were prolonged in the LV as well as in the kidney. During hypercapnic stress, HR decreased in both SS and SR rats, while sudden increases in HR immediately after the withdrawal from stress were followed by its slower reduction in SS rats compared with SR rats. In conclusion, transient hypercapnic stress causes exaggerated and prolonged elevation of iNE levels in the heart as well as in kidneys of SS animals.


2003 ◽  
Vol 285 (5) ◽  
pp. H2013-H2018 ◽  
Author(s):  
Hao Wang ◽  
Roselyn White ◽  
Frans H. H. Leenen

Stimulation of brain Na+ channels by Phe-Met-Arg-Phe-NH2 (FMRFamide) increases sympathetic nerve activity and blood pressure (BP) in Wistar rats. Blockade of brain ouabain-like compounds (OLC) by specific antibody Fab fragments prevents these responses to intracerebroventricular FMRFamide. In the present study, we evaluated the effects of high-salt intake on brain FMRFamide levels and the responses of BP and brain OLC to intracerebroventricular infusion of FMRFamide in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. FMRFamide and OLC content was measured with the use of RIA and ELISA, respectively. A high-salt diet (1,370 μmol Na+/g) for 2 wk significantly increased BP in Dahl SS but not in SR rats. On a regular salt diet, Dahl SS and SR rats showed similar FMRFamide levels in the whole hypothalamus, pons and medulla, and spinal cord. A high-salt diet for 2 wk did not affect FMRFamide levels in these tissues in both Dahl SS and SR rats. In Dahl SS but not in SR rats, chronic intracerebroventricular infusion of FMRFamide (200 nmol · kg–1 · day–1) for 2 wk significantly increased BP (mean arterial pressure: 116 ± 5 vs. 100 ± 2 mmHg; P < 0.01). Chronic intracerebroventricular infusion of FMRFamide significantly increased hypothalamic and pituitary OLC in Dahl SS but not SR rats. These results indicate that Dahl SS rats exhibit enhanced central responses to FMRFamide. In Dahl SS but not in SR rats on a high-salt diet, enhanced Na+ entry through FMRFamide-activated brain Na+ channels may increase brain OLC release, thereby leading to hypertension.


2002 ◽  
Vol 283 (1) ◽  
pp. R243-R248 ◽  
Author(s):  
Jennifer M. Sasser ◽  
Jennifer S. Pollock ◽  
David M. Pollock

To determine the influence of chronic ANG II infusion on urinary, plasma, and renal tissue levels of immunoreactive endothelin (ET), ANG II (65 ng/min) or saline vehicle was delivered via osmotic minipump in male Sprague-Dawley rats given either a high-salt diet (10% NaCl) or normal-salt diet (0.8% NaCl). High-salt diet alone caused a slight but not statistically significant increase (7 ± 1%) in mean arterial pressure (MAP). MAP was significantly increased in ANG II-infused rats (41 ± 10%), and the increase in MAP was significantly greater in ANG II rats given a high-salt diet (59 ± 1%) compared with the increase observed in rats given a high-salt diet alone or ANG II infusion and normal-salt diet. After a 2-wk treatment, urinary excretion of immunoreactive ET was significantly increased by ∼50% in ANG II-infused animals and by over 250% in rats on high-salt diet, with or without ANG II infusion. ANG II infusion combined with high-salt diet significantly increased immunoreactive ET content in the cortex and outer medulla, but this effect was not observed in other groups. In contrast, high-salt diet, with or without ANG II infusion, significantly decreased immunoreactive ET content within the inner medulla. These data indicate that chronic elevations in ANG II levels and sodium intake differentially affect ET levels within the kidney and provide further support for the hypothesis that the hypertensive effects of ANG II may be due to interaction with the renal ET system.


2008 ◽  
Vol 295 (2) ◽  
pp. R381-R387 ◽  
Author(s):  
Valerio G. Barauna ◽  
Flávio C. Magalhaes ◽  
Jose E. Krieger ◽  
Edilamar M. Oliveira

Resistance training is accompanied by cardiac hypertrophy, but the role of the renin-angiotensin system (RAS) in this response is elusive. We evaluated this question in 36 male Wistar rats divided into six groups: control ( n = 6); trained ( n = 6); control + losartan (10 mg·kg−1·day−1, n = 6); trained + losartan ( n = 6); control + high-salt diet (1%, n = 6); and trained + high-salt diet (1%, n = 6). High salt was used to inhibit the systemic RAS and losartan to block the AT1 receptor. The exercise protocol consisted of: 4 × 12 bouts, 5×/wk during 8 wk, with 65–75% of one repetition maximum. Left ventricle weight-to-body weight ratio increased only in trained and trained + high-salt diet groups (8.5% and 10.6%, P < 0.05) compared with control. Also, none of the pathological cardiac hypertrophy markers, atrial natriuretic peptide, and αMHC (α-myosin heavy chain)-to-βMHC ratio, were changed. ACE activity was analyzed by fluorometric assay (systemic and cardiac) and plasma renin activity (PRA) by RIA and remained unchanged upon resistance training, whereas PRA decreased significantly with the high-salt diet. Interestingly, using Western blot analysis and RT-PRC, no changes were observed in cardiac AT2 receptor levels, whereas the AT1 receptor gene (56%, P < 0.05) and protein (31%, P < 0.05) expressions were upregulated in the trained group. Also, cardiac ANG II concentration evaluated by ELISA remained unchanged (23.27 ± 2.4 vs. 22.01 ± 0.8 pg/mg, P > 0.05). Administration of a subhypotensive dose of losartan prevented left ventricle hypertrophy in response to the resistance training. Altogether, we provide evidence that resistance training-induced cardiac hypertrophy is accompanied by induction of AT1 receptor expression with no changes in cardiac ANG II, which suggests a local activation of the RAS consistent with the hypertrophic response.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Wararat Kittikulsuth ◽  
David M Pollock

Endothelin B (ET B ) receptors mediate vasodilation, anti-inflammation and natriuresis, which ultimately contribute to blood pressure control. We previously showed that renal medullary ET B receptor function is maintained in female angiotensin (Ang) II hypertensive rats, while male Ang II hypertensive rats have blunted ET B -induced natriuretic responses. Because female rats are more resistance to blood pressure elevation induced by high salt intake and/or Ang II infusion, we hypothesized that ET B receptors protect female rats against the hypertensive response and renal injury induced by a high salt diet and chronic Ang II infusion compared to males. Male and female rats received Ang II infusion (150 ng/kg/min; sc.) with 4% NaCl for 4 weeks; blood pressure was measured by telemetry. After a week of Ang II infusion with a high salt diet, subsets of both male and female rats received the ET B antagonist, A-192621, at three doses on consecutive weeks (1, 3, and 10 mg/kg/d in food). Male rats had a significantly higher blood pressure compared to females after 4 weeks of Ang II (178±10 vs. 138±10 mmHg; p<0.05). A-192621 resulted in a dose-dependent increase in blood pressure in female Ang II hypertensive rats (167±8 mmHg at 10 mg/kg/d; p<0.05); the increase produced by A-192621 in male Ang II hypertensive rats was not statistically significant (193±10 mmHg). After 4 weeks of Ang II infusion, the level of proteinuria and nephrinuria was higher in male rats compared to female. A-192621 did not further increase urinary excretion of protein or nephrin in both male and female Ang II hypertensive rats. In conclusion, these results support the hypothesis that ET B receptors provide more protection against hypertension during chronic Ang II infusion in female rats compared to male.


1997 ◽  
Vol 273 (2) ◽  
pp. H869-H877 ◽  
Author(s):  
Y. Liu ◽  
K. T. Fredricks ◽  
R. J. Roman ◽  
J. H. Lombard

This study assessed vasodilator responses in skeletal muscle resistance arteries (100-250 microns) from rats with chronic (4-8 wk) reduced renal mass (RRM) hypertension and normotensive sham-operated controls on a high (4% NaCl; HSSHAM)- or low (0.4% NaCl; LSSHAM)-salt diet. Arteries from RRM hypertensive rats [normal and high-salt diet (HSRRM)] and a separate group of spontaneously hypertensive rats exhibited an impaired dilation in response to reduced PO2 compared with those of their normotensive controls. Prostacyclin release, assessed by radio-immunoassay for 6-ketoprostaglandin F1 alpha, increased significantly in response to reduced PO2, but was unaffected by hypertension or salt intake. Dilator responses to acetylcholine and the prostacyclin analog iloprost were significantly reduced in both HSRRM and HSSHAM compared with LSSHAM rats. Dilation in response to direct activation of adenylate cyclase with forskolin or guanylate cyclase with the nitric oxide donor sodium nitroprusside was not significantly different in HSRRM, HSSHAM, and LSSHAM rats. These results indicate that hypoxic dilation is impaired in skeletal muscle resistance arteries of hypertensive rats and that chronic high-salt diet alone leads to impaired vasodilator responses in resistance arteries of normotensive animals, possibly via abnormalities in membrane function or G protein signaling rather than impaired second-messenger function.


2020 ◽  
Vol 21 (6) ◽  
pp. 2248 ◽  
Author(s):  
Abu Sufiun ◽  
Asadur Rahman ◽  
Kazi Rafiq ◽  
Yoshihide Fujisawa ◽  
Daisuke Nakano ◽  
...  

The aim of the present study is to investigate whether a disruption of the dipping pattern of blood pressure (BP) is associated with the progression of renal injury in Dahl salt-sensitive (DSS) hypertensive rats. Seven-week-old DSS rats were fed a high salt diet (HSD; 8% NaCl) for 10 weeks, followed by a transition to a normal salt diet (NSD; 0.3% NaCl) for 4 weeks. At baseline, NSD-fed DSS rats showed a dipper-type circadian rhythm of BP. By contrast, HSD for 5 days caused a significant increase in the difference between the active and inactive periods of BP with an extreme dipper type of BP, while proteinuria and renal tissue injury were not observed. Interestingly, HSD feeding for 10 weeks developed hypertension with a non-dipper pattern of BP, which was associated with obvious proteinuria and renal tissue injury. Four weeks after switching to an NSD, BP and proteinuria were significantly decreased, and the BP circadian rhythm returned to the normal dipper pattern. These data suggest that the non-dipper pattern of BP is associated with the progression of renal injury during the development of salt-dependent hypertension.


Sign in / Sign up

Export Citation Format

Share Document