Characterizing Extracellular White Matter Pathologies Using Free Water Imaging Across the Schizophrenia Illness Course: A Multi-Site Harmonized Diffusion MRI Study

2021 ◽  
Vol 89 (9) ◽  
pp. S85
Author(s):  
Suheyla Cetin-Karayumak ◽  
Ofer Pasternak ◽  
Fan Zhang ◽  
Johanna Seitz ◽  
Doron Elad ◽  
...  
Author(s):  
Inês Carreira Figueiredo ◽  
Faith Borgan ◽  
Ofer Pasternak ◽  
Federico E. Turkheimer ◽  
Oliver D. Howes

AbstractWhite-matter abnormalities, including increases in extracellular free-water, are implicated in the pathophysiology of schizophrenia. Recent advances in diffusion magnetic resonance imaging (MRI) enable free-water levels to be indexed. However, the brain levels in patients with schizophrenia have not yet been systematically investigated. We aimed to meta-analyse white-matter free-water levels in patients with schizophrenia compared to healthy volunteers. We performed a literature search in EMBASE, MEDLINE, and PsycINFO databases. Diffusion MRI studies reporting free-water in patients with schizophrenia compared to healthy controls were included. We investigated the effect of demographic variables, illness duration, chlorpromazine equivalents of antipsychotic medication, type of scanner, and clinical symptoms severity on free-water measures. Ten studies, including five of first episode of psychosis have investigated free-water levels in schizophrenia, with significantly higher levels reported in whole-brain and specific brain regions (including corona radiata, internal capsule, superior and inferior longitudinal fasciculus, cingulum bundle, and corpus callosum). Six studies, including a total of 614 participants met the inclusion criteria for quantitative analysis. Whole-brain free-water levels were significantly higher in patients relative to healthy volunteers (Hedge’s g = 0.38, 95% confidence interval (CI) 0.07–0.69, p = 0.02). Sex moderated this effect, such that smaller effects were seen in samples with more females (z = −2.54, p < 0.05), but antipsychotic dose, illness duration and symptom severity did not. Patients with schizophrenia have increased free-water compared to healthy volunteers. Future studies are necessary to determine the pathological sources of increased free-water, and its relationship with illness duration and severity.


2012 ◽  
Vol 60 (5) ◽  
pp. S197
Author(s):  
A. Bargiacchi ◽  
A. Cachia ◽  
L. Lemaitre ◽  
N. Chabane ◽  
N. Boddaert ◽  
...  

2021 ◽  
Vol 53 ◽  
pp. S551-S552
Author(s):  
I. Carreira Figueiredo ◽  
F. Borgan ◽  
O. Pasternak ◽  
F.E. Turkheimer ◽  
O. Howes

2019 ◽  
Vol 53 ◽  
pp. 51-59 ◽  
Author(s):  
Jiaxuan Zhang ◽  
Terri E. Weaver ◽  
Zheng Zhong ◽  
Robyn A. Nisi ◽  
Kelly R. Martin ◽  
...  

NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S158
Author(s):  
M Maddah ◽  
M Kubicki ◽  
C-F Westin ◽  
WEL Grimson ◽  
WM Wells

Author(s):  
Antonio Tristán‐Vega ◽  
Guillem París ◽  
Rodrigo Luis‐García ◽  
Santiago Aja‐Fernández

2019 ◽  
Vol 22 ◽  
pp. 101710 ◽  
Author(s):  
Julie Coloigner ◽  
Jean-Marie Batail ◽  
Olivier Commowick ◽  
Isabelle Corouge ◽  
Gabriel Robert ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Nasir Uddin ◽  
Abrar Faiyaz ◽  
Lu Wang ◽  
Yuchuan Zhuang ◽  
Kyle D. Murray ◽  
...  

AbstractInitiation of combination antiretroviral therapy (cART) reduces inflammation in HIV-infected (HIV+) individuals. Recent studies demonstrated that diffusion MRI based extracellular free water (FW) modeling can be sensitive to neuroinflammation. Here, we investigate the FW in HIV-infection, its temporal evolution, and its association with blood markers, and cognitive scores. Using 96 age-matched participants, we found that FW was significantly elevated in grey and white matter in cART-naïve HIV+ compared to HIV-uninfected (HIV−) individuals at baseline. These increased FW values positively correlated with neurofilament light chain (NfL) and negatively correlated with CD4 counts. FW in grey and white matter, as well as NfL decreased in the HIV+ after 12 weeks of cART treatment. No significant FW differences were noted between the HIV+ and HIV− cohorts at 1 and 2-year follow-up. Results suggest that FW elevation in cART-naïve HIV+ participants is likely due to neuroinflammation. The correlation between FW and NfL, and the improvement in both FW and NfL after 12 weeks of cART treatment further reinforces this conclusion. The longer follow-up at 1 and 2 years suggests that cART helped control neuroinflammation as inferred by FW. Therefore, FW could be used as a biomarker to monitor HIV-associated neuroinflammation.


2019 ◽  
Author(s):  
Remika Mito ◽  
Thijs Dhollander ◽  
Ying Xia ◽  
David Raffelt ◽  
Olivier Salvado ◽  
...  

AbstractWhite matter hyperintensities (WMH) are commonly observed in elderly individuals, and are typically more prevalent in Alzheimer’s disease subjects than in healthy subjects. These lesions can be identified on fluid attenuated inversion recovery (FLAIR) MRI, on which they are hyperintense compared to their surroundings. These MRI-visible lesions appear homogeneously hyperintense despite known heterogeneity in their pathological underpinnings, and are commonly regarded as surrogate markers of small vessel disease in in vivo studies. Consequently, the extent to which these lesions contribute to Alzheimer’s disease remains unclear, likely due to the somewhat limited way in which these lesions are assessed in vivo. Diffusion MRI is sensitive to white matter microstructure, and might thus be used to investigate microstructural changes within WMH. In this study, we applied a method called single-shell 3-tissue constrained spherical deconvolution, which models white matter microstructure while also accounting for other tissue compartments, to investigate WMH in vivo. Diffusion MRI data and FLAIR images were obtained from Alzheimer’s disease (n = 48) and healthy elderly control (n = 94) subjects from the Australian Imaging, Biomarkers and Lifestyle study of ageing. WMH were automatically segmented and classified as periventricular or deep lesions from FLAIR images based on their continuity with the lateral ventricles, and the 3-tissue profile of different classes of WMH was characterised by three metrics, which together characterised the relative tissue profile in terms of the white matter-, grey matter-, and fluid-like characteristics of the diffusion signal. Our findings revealed that periventricular and deep lesion classes could be distinguished from one another, and from normal-appearing white matter based on their 3-tissue profile, with substantially higher free water content in periventricular lesions than deep. Given the higher lesion load of periventricular lesions in Alzheimer’s disease patients, the 3-tissue profile of these WMH could be interpreted as reflecting the more deleterious pathological underpinnings that are associated with disease. However, when alternatively classifying lesion sub-regions in terms of distance contours from the ventricles to account for potential heterogeneity within confluent lesions, we found that the highest fluid content was present in lesion areas most proximal to the ventricles, which were common to both Alzheimer’s disease subjects and healthy controls. We argue that whatever classification scheme is used when investigating WMH, failure to account for heterogeneity within lesions may result in classification-scheme dependent conclusions. Future studies of WMH in Alzheimer’s Disease would benefit from inclusion of microstructural information when characterising lesions.


Sign in / Sign up

Export Citation Format

Share Document