Visual object separation resolves competitive interactions in somatosensory cortex evoked signals during concurrent vibrotactile stimulation of the left and right hand

2017 ◽  
Vol 125 ◽  
pp. 154-162 ◽  
Author(s):  
Cheuk Yee Pang ◽  
Matthias M. Müller
Author(s):  
W. Schellekens ◽  
M. Thio ◽  
S. Badde ◽  
J. Winawer ◽  
N. Ramsey ◽  
...  

AbstractSeveral neuroimaging studies have shown the somatotopy of body part representations in primary somatosensory cortex (S1), but the functional hierarchy of distinct subregions in human S1 has not been adequately addressed. The current study investigates the functional hierarchy of cyto-architectonically distinct regions, Brodmann areas BA3, BA1, and BA2, in human S1. During functional MRI experiments, we presented participants with vibrotactile stimulation of the fingertips at three different vibration frequencies. Using population Receptive Field (pRF) modeling of the fMRI BOLD activity, we identified the hand region in S1 and the somatotopy of the fingertips. For each voxel, the pRF center indicates the finger that most effectively drives the BOLD signal, and the pRF size measures the spatial somatic pooling of fingertips. We find a systematic relationship of pRF sizes from lower-order areas to higher-order areas. Specifically, we found that pRF sizes are smallest in BA3, increase slightly towards BA1, and are largest in BA2, paralleling the increase in visual receptive field size as one ascends the visual hierarchy. Additionally, we find that the time-to-peak of the hemodynamic response in BA3 is roughly 0.5 s earlier compared to BA1 and BA2, further supporting the notion of a functional hierarchy of subregions in S1. These results were obtained during stimulation of different mechanoreceptors, suggesting that different afferent fibers leading up to S1 feed into the same cortical hierarchy.


1991 ◽  
Vol 66 (3) ◽  
pp. 688-695 ◽  
Author(s):  
E. Smits ◽  
D. C. Gordon ◽  
S. Witte ◽  
D. D. Rasmusson ◽  
P. Zarzecki

1. "Unmasking" of weak synaptic connections has been suggested as a mechanism for the early changes in cortical topographic maps that follow alterations of sensory activity. For such a mechanism to operate, convergent sensory inputs must already exist in the normal cortex. 2. We tested for topographic and cross-modality convergence in primary somatosensory cortex of raccoon. The representation of glabrous skin of forepaw digits was chosen because, even though it is dominated by inputs from the glabrous skin of a single digit, it nevertheless comes to respond to stimulation of other digits when, e.g., a digit is removed. 3. Intracellular recordings were made from 109 neurons in the representation of glabrous skin of digit 4. Neurons were tested for somatosensory inputs with electrical and natural stimulation of digits. 4. Excitatory postsynaptic potentials (EPSPs) were evoked in 100% of the neurons (109/109) by electrical stimulation of glabrous skin of digit 4, and in 79% (31 of 39) by vibrotactile stimulation. 5. Glabrous skin of digit 4 was not the sole source of somatosensory inputs. A minority of neurons generated EPSPs after electrical stimulation of hairy skin of digit 4 (10 of 98 neurons, 10%). Electrical stimulation of digits 3 or 5 evoked EPSPs in 22 of 103 neurons (21%). Natural stimulation (vibrotactile or hair bending) was also effective in most of these latter cases (digit 3, 6/7; digit 5, 9/10). 6. Intracortical microstimulation of the "heterogeneous zone" was used to test for corticocortical connections to neurons in the glabrous zone.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Author(s):  
W. Schellekens ◽  
M. Thio ◽  
S. Badde ◽  
J. Winawer ◽  
N. Ramsey ◽  
...  

AbstractSeveral neuroimaging studies have shown the somatotopy of body part representations in primary somatosensory cortex (S1), but the functional hierarchy of distinct subregions in human S1 has not been adequately addressed. The current study investigates the functional hierarchy of cyto-architectonically distinct regions, Brodmann areas BA3, BA1, and BA2, in human S1. During functional MRI experiments, we presented participants with vibrotactile stimulation of the fingertips at 3 different vibration frequencies. Using population Receptive Field (pRF) modeling of the fMRI BOLD activity, we identified the hand region in S1 and the somatotopy of the fingertips. For each voxel, the pRF center indicates the finger that most effectively drives the BOLD signal, and the pRF size measures the spatial somatic pooling of fingertips. We find a systematic relationship of pRF sizes from lower-order areas to higher-order areas. Specifically, we found that pRF sizes are smallest in BA3, increase slightly towards BA1, and are largest in BA2, paralleling the increase in visual receptive field size as one ascends the visual hierarchy. Additionally, we find that the time-to-peak of the hemodynamic response in BA3 is roughly 0.5s earlier compared to BA1 and BA2, further supporting the notion of a functional hierarchy of subregions in S1. These results were obtained during stimulation of different mechanoreceptors, suggesting that different afferent fibers leading up to S1 feed into the same cortical hierarchy.


2009 ◽  
Author(s):  
Jos J. Adam ◽  
Susan Hoonhorst ◽  
Rick Muskens ◽  
Jay Pratt ◽  
Martin H. Fischer

2015 ◽  
Vol 114 (5) ◽  
pp. 2588-2599 ◽  
Author(s):  
Gijs Joost Brouwer ◽  
Vanessa Arnedo ◽  
Shani Offen ◽  
David J. Heeger ◽  
Arthur C. Grant

Functional magnetic resonance imaging (fMRI) was used to measure activity in human somatosensory cortex and to test for cross-digit suppression. Subjects received stimulation (vibration of varying amplitudes) to the right thumb (target) with or without concurrent stimulation of the right middle finger (mask). Subjects were less sensitive to target stimulation (psychophysical detection thresholds were higher) when target and mask digits were stimulated concurrently compared with when the target was stimulated in isolation. fMRI voxels in a region of the left postcentral gyrus each responded when either digit was stimulated. A regression model (called a forward model) was used to separate the fMRI measurements from these voxels into two hypothetical channels, each of which responded selectively to only one of the two digits. For the channel tuned to the target digit, responses in the left postcentral gyrus increased with target stimulus amplitude but were suppressed by concurrent stimulation to the mask digit, evident as a shift in the gain of the response functions. For the channel tuned to the mask digit, a constant baseline response was evoked for all target amplitudes when the mask was absent and responses decreased with increasing target amplitude when the mask was concurrently presented. A computational model based on divisive normalization provided a good fit to the measurements for both mask-absent and target + mask stimulation. We conclude that the normalization model can explain cross-digit suppression in human somatosensory cortex, supporting the hypothesis that normalization is a canonical neural computation.


1990 ◽  
Vol 157 (6) ◽  
pp. 881-887 ◽  
Author(s):  
Paul Furlong ◽  
Paul Barczak ◽  
Gwilym Hayes ◽  
Graham Harding

The SSEPs obtained from 19 schizophrenics defined by RDC, DSM–III and PSE criteria Were compared with those from a control group of healthy volunteers. Previous findings of an abnormal lack of lateralising response in schizophrenic patients were not replicated. No significant difference in either amplitude or morphology between the traces obtained from the two groups were recorded. Ipsilateral and contralateral latencies for stimulation of the left and right index finger showed no significant difference in peak latency for any component between patient and control group. When mean peak-to-peak amplitudes were plotted the contralateral component was always greater in amplitude than the ipsilateral one. An objective measure of the degree of lateralisation, the percentage lateralisation quotient, showed no lateralisation differences between the patient and control groups. A case of myogenic contamination of ipsilateral components was observed calling into doubt findings where no temporal region monitoring has been performed.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Konstantin N. Lyashchenko ◽  
Victoria A. Knyazeva ◽  
Oleg Yu. Andreev ◽  
Deyang Yu

2003 ◽  
Vol 94 (1) ◽  
pp. 220-226 ◽  
Author(s):  
Weirong Zhang ◽  
Paul W. Davenport

It has been demonstrated that phrenic nerve afferents project to somatosensory cortex, yet the sensory pathways are still poorly understood. This study investigated the neural responses in the thalamic ventroposteriolateral (VPL) nucleus after phrenic afferent stimulation in cats and rats. Activation of VPL neurons was observed after electrical stimulation of the contralateral phrenic nerve. Direct mechanical stimulation of the diaphragm also elicited increased activity in the same VPL neurons that were activated by electrical stimulation of the phrenic nerve. Some VPL neurons responded to both phrenic afferent stimulation and shoulder probing. In rats, VPL neurons activated by inspiratory occlusion also responded to stimulation on phrenic afferents. These results demonstrate that phrenic afferents can reach the VPL thalamus under physiological conditions and support the hypothesis that the thalamic VPL nucleus functions as a relay for the conduction of proprioceptive information from the diaphragm to the contralateral somatosensory cortex.


Sign in / Sign up

Export Citation Format

Share Document