scholarly journals Effect of mixing on enzymatic hydrolysis of cardboard waste: Saccharification yield and subsequent separation of the solid residue using a pressure filter

2012 ◽  
Vol 110 ◽  
pp. 405-411 ◽  
Author(s):  
Teemu Kinnarinen ◽  
Marina Shakhanova ◽  
Erika Hietanen ◽  
Riina Salmimies ◽  
Antti Häkkinen ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4552 ◽  
Author(s):  
Merve Nazli Borand ◽  
Asli Isler Kaya ◽  
Filiz Karaosmanoglu

Pressure, temperature, and retention time are the most studied parameters in steam explosion pretreatment. However, this work aimed to fix these parameters and to evaluate the influences of several less investigated steam explosion parameters on the saccharification yield in hydrolysis. In this study, firstly, pinewood samples smaller than 200 µm were treated with steam explosion at 190 °C for 10 min. The variable parameters were biomass loading, N2 pressure, and release time. Steam-exploded samples were hydrolyzed with the Trichoderma reesei enzyme for saccharification for 72 h. The sugar content of the resultant products was analyzed to estimate the yield of sugars (such as glucose, xylose, galactose, mannose, and arabinose). The best glucose yield in the pulp was achieved with 4 g of sample, N2 pressure of 0.44 MPa, and short release time (22 s). These conditions gave a glucose yield of 97.72% in the pulp, and the xylose, mannose, galactose, and arabinose yields in the liquid fraction were found to be 85.59%, 87.76%, 86.43%, and 90.3%, respectively.


2017 ◽  
Vol 162 ◽  
pp. 27-33 ◽  
Author(s):  
Pedro Henrique Gonzalez de Cademartori ◽  
Francine Ceccon Claro ◽  
Nelson Potenciano Marinho ◽  
Patrícia Raquel Silva Zanoni ◽  
Washington Luiz Esteves Magalhães

Author(s):  
Marcin Lukasiewicz ◽  
Anna Osowiec ◽  
Magdalena Marciniak

2018 ◽  
Author(s):  
Ángel Batallas ◽  
Erenio González ◽  
Carmen Salvador ◽  
Jonathan Villavicencio ◽  
Humberto González Gavilánez ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


2020 ◽  
Vol 204 ◽  
pp. 106407 ◽  
Author(s):  
Shengxin An ◽  
Wenzhi Li ◽  
Fengyang Xue ◽  
Xu Li ◽  
Ying Xia ◽  
...  

2013 ◽  
Vol 85 (17) ◽  
pp. 8121-8126 ◽  
Author(s):  
Britta Opitz ◽  
Andreas Prediger ◽  
Christian Lüder ◽  
Marrit Eckstein ◽  
Lutz Hilterhaus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document