Faculty Opinions recommendation of Enzymatic hydrolysis of pneumococcal capsular polysaccharide renders the bacterium vulnerable to host defense.

Author(s):  
Mattias Collin
2018 ◽  
Vol 86 (8) ◽  
Author(s):  
Dustin R. Middleton ◽  
Amy V. Paschall ◽  
Jeremy A. Duke ◽  
Fikri Y. Avci

ABSTRACTDespite a century of investigation,Streptococcus pneumoniaeremains a major human pathogen, causing a number of diseases, such as pneumonia, meningitis, and otitis media. Like many encapsulated pathogens, the capsular polysaccharide (CPS) ofS. pneumoniaeis a critical component for colonization and virulence in mammalian hosts. This study aimed to evaluate the protective role of a glycoside hydrolase, Pn3Pase, targeting the CPS of type 3S. pneumoniae, which is one of the most virulent serotypes. We have assessed the ability of Pn3Pase to degrade the capsule on a live type 3 strain. Throughin vitroassays, we observed that Pn3Pase treatment increases the bacterium's susceptibility to phagocytosis by macrophages and complement-mediated killing by neutrophils. We have demonstrated thatin vivoPn3Pase treatment reduces nasopharyngeal colonization and protects mice from sepsis caused by type 3S. pneumoniae. Due to the increasing shifts in serotype distribution, the rise in drug-resistant strains, and poor immune responses to vaccine-included serotypes, it is necessary to investigate approaches to combat pneumococcal infections. This study evaluates the interaction of pneumococcal CPS with the host at molecular, cellular, and systemic levels and offers an alternative therapeutic approach for diseases caused byS. pneumoniaethrough enzymatic hydrolysis of the CPS.


Author(s):  
Marcin Lukasiewicz ◽  
Anna Osowiec ◽  
Magdalena Marciniak

2018 ◽  
Author(s):  
Ángel Batallas ◽  
Erenio González ◽  
Carmen Salvador ◽  
Jonathan Villavicencio ◽  
Humberto González Gavilánez ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


2020 ◽  
Vol 204 ◽  
pp. 106407 ◽  
Author(s):  
Shengxin An ◽  
Wenzhi Li ◽  
Fengyang Xue ◽  
Xu Li ◽  
Ying Xia ◽  
...  

2013 ◽  
Vol 85 (17) ◽  
pp. 8121-8126 ◽  
Author(s):  
Britta Opitz ◽  
Andreas Prediger ◽  
Christian Lüder ◽  
Marrit Eckstein ◽  
Lutz Hilterhaus ◽  
...  

2014 ◽  
Vol 98 (12) ◽  
pp. 5765-5774 ◽  
Author(s):  
Yaping Shang ◽  
Rongxin Su ◽  
Renliang Huang ◽  
Yang Yang ◽  
Wei Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document