Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass

2012 ◽  
Vol 119 ◽  
pp. 72-78 ◽  
Author(s):  
Karina Michalska ◽  
Krystian Miazek ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz
2019 ◽  
Vol 116 ◽  
pp. 00104
Author(s):  
Iwona Zawieja ◽  
Kinga Brzeska

The advanced oxidation processes (AOPs) play an important role in the degradation of hardly decomposable organic pollutants. AOPs methods rely on the production of highly reactive hydroxyl OH• radicals. The aim of the conducted research was to intensify biogas production in the methane fermentation process of excess sludge subjected to the process of deep oxidation with Fenton's reagent. In the process of oxidation of sewage sludge with the Fenton reagent, doses of iron ions in the range 0.02–0.14 g Fe2+/g TS (total solids) were used Hydrogen peroxide was measured in the proportions 1: 1–1:10 in relation to the mass of iron ions. The basic substrate of the study was excess sludge. In the case of excess sludge oxidation with the use of Fenton's reagent, the most favorable process conditions were considered to be the dose of iron ions 0.08 g Fe2+/g d.m. and a Fe2+: H2O2 ratio of 1:5. As a result of subjecting the excess sludge to disintegration with the Fenton reagent in the above-mentioned dose, with respect to the fermentation process of unprocessed sludge, about two-fold increase in the digestion degree of excess sludge and about 35% increase of the biogas yield was obtained.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 539 ◽  
Author(s):  
Renfei Li ◽  
Wenbing Tan ◽  
Xinyu Zhao ◽  
Qiuling Dang ◽  
Qidao Song ◽  
...  

Wood waste generated during the tree felling and processing is a rich, green, and renewable lignocellulosic biomass. However, an effective method to apply wood waste in anaerobic digestion is lacking. The high carbon to nitrogen (C/N) ratio and rich lignin content of wood waste are the major limiting factors for high biogas production. NaOH pre-treatment for lignocellulosic biomass is a promising approach to weaken the adverse effect of complex crystalline cellulosic structure on biogas production in anaerobic digestion, and the synergistic integration of lignocellulosic biomass with low C/N ratio biomass in anaerobic digestion is a logical option to balance the excessive C/N ratio. Here, we assessed the improvement of methane production of wood waste in anaerobic digestion by NaOH pretreatment, co-digestion technique, and their combination. The results showed that the methane yield of the single digestion of wood waste was increased by 38.5% after NaOH pretreatment compared with the untreated wood waste. The methane production of the co-digestion of wood waste and pig manure was higher than that of the single digestion of wood waste and had nonsignificant difference with the single-digestion of pig manure. The methane yield of the co-digestion of wood waste pretreated with NaOH and pig manure was increased by 75.8% than that of the untreated wood waste. The findings indicated that wood waste as a sustainable biomass source has considerable potential to achieve high biogas production in anaerobic digestion.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 878
Author(s):  
Apinya Singkhala ◽  
Chonticha Mamimin ◽  
Alissara Reungsang ◽  
Sompong O-Thong

A sudden pH drops always inhibits the anaerobic digestion (AD) reactor for biogas production from palm oil mill effluent (POME). The pH adjustment of POME by oil palm ash addition and the biogas effluent recycling effect on the preventing of pH drop and change of the archaea community was investigated. The pH adjustment of POME to 7.5 increased the methane yield two times more than raw POME (pH 4.3). The optimal dose for pH adjustment by oil palm ash addition was 5% w/v with a methane yield of 440 mL-CH4/gVS. The optimal dose for pH adjustment by biogas effluent recycling was 20% v/v with a methane yield of 351 mL-CH4/gVS. Methane production from POME in a continuous reactor with pH adjustment by 5% w/v oil palm ash and 20% v/v biogas effluent recycling was 19.1 ± 0.25 and 13.8 ± 0.3 m3 CH4/m3-POME, respectively. The pH adjustment by oil palm ash enhanced methane production for the long-term operation with the stability of pH, alkalinity, and archaea community. Oil palm ash increased the number of Methanosarcina mazei and Methanothermobacter defluvii. Oil palm ash is a cost-effective alkali material as a source of buffer and trace metals for preventing the pH drop and the increased methanogen population in the AD process.


2017 ◽  
Vol 141 ◽  
pp. 180-183 ◽  
Author(s):  
Prapakorn Tantayotai ◽  
Peerapong Pornwongthong ◽  
Chotika Muenmuang ◽  
Theerawut Phusantisampan ◽  
Malinee Sriariyanun

2000 ◽  
Vol 9 (4) ◽  
pp. 331-345 ◽  
Author(s):  
Katherine R. Weeks ◽  
Clifford J. Bruell ◽  
Nihar R. Mohanty

Tetrahedron ◽  
1963 ◽  
Vol 19 (11) ◽  
pp. 1705-1710 ◽  
Author(s):  
G.J. Moody

Sign in / Sign up

Export Citation Format

Share Document