naoh pretreatment
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 24)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Soni Tiwari ◽  
Janardan Yadav ◽  
Rajeeva Gaur ◽  
Ranjan Singh ◽  
Tuhina Verma ◽  
...  

The enzymatic saccharification of sugarcane bagasse was significantly increased by alkali pretreatment under mild conditions. The effectiveness of different concentrations of alkali and acid pretreatment of sugarcane bagasse for improving the enzymatic saccharification of lignocellulose has been evaluated. The sugarcane bagasse was characterized to contain 39.52% celluloses, 25.63% hemicelluloses, and 30.36% lignin. After that, sugarcane bagasse was pretreated with 5 and 10% of H2SO4 and NaOH at 121°C for 60 min. FTIR, XRD, and SEM analyses also showed significant molecular and surface structure changes of the sugarcane bagasse with 10% NaOH. Maximum saccharification was 489.5 mg/g from 10% NaOH pretreatment followed by 322.75, 301.25, and 276.6 mg/g from 10% H2SO4, 5% NaOH, and 5% H2SO4, respectively, which were 55.1, 32.0, 27.1, and 20.6 times higher than the that of the control. Cellulase and xylanase produced by Pseudomonas sp. CVB-10 (MK443365) and Bacillus paramycoides T4 (MN370035) were used to hydrolyze the pretreated bagasse, and the optimal condition was determined to be 30 h of the enzymatic reaction with the 3:1 ratio of enzymes under the temperature of 55°C, pH 5.0, and substrate concentration of 3%, leading to celluloses and hemicelluloses conversion in the enzymatic hydrolysis/saccharification that is more proficient.


Author(s):  
Elena V. Ovchinnikova ◽  
Galina F. Mironova ◽  
Sardana P. Banzaraktsaeva ◽  
Ekaterina A. Skiba ◽  
Vera V. Budaeva ◽  
...  

2021 ◽  
Vol 170 ◽  
pp. 113773
Author(s):  
Hong Chen ◽  
Jieyu Wu ◽  
Jiangjing Shi ◽  
Wenfu Zhang ◽  
Ge Wang

Author(s):  
Kamau J. M ◽  
Mbui D. N ◽  
Mwaniki J. M ◽  
Waswa G. A.

Effects of pretreatment on the anaerobic digestion of waste fruit and vegetable market waste were investigated in biogas production by batch experiments. The pretreatment was NaOH and HCl thermochemical, thermal and chemical methods. The wastes were chopped and blended before loading to the digester. Acid hydrolysis was done by adding 20ml 0.1M HCl with thorough mixing before purging with CO2 and sealing. Alkaline pretreatment was done using 1M NaOH. In both cases, the setups were exposed to heat at 1000C for 12hours, after which they were allowed to cool for 3 hours. The pH was modified to 6.7 – 7.2 before loading the inoculum and studying biogas generation. The large-scale setups with 1.0l, 1.5l, 5l and 10l capacity were studied for biogas generation. The results obtained show that thermochemical pretreatment results in more cumulative biogas production at 6200ml, followed by thermal at 4900ml and then chemical pretreatments at 3750ml for 500g mixed fruits and vegetable market wastes. Alkaline pretreatment is more efficient compared to acidic hydrolysis though highly influenced by proximate properties of the wastes and operation pH. The large-scale pretreatment resulted in 34500ml and 31400ml cumulative biogas from HCl and NaOH pretreatment. In conclusion, thermochemical pretreatment of market waste results in increased biogas generation resulting from hemicellulose breakdown and disrupting lignin-hemicellulose ether bonds in acid hydrolysis. In contrast, alkaline pretreatment leads to swelling of lignocelluloses and partial lignin solubilization lignin breakdown. The overall biogas generation depends on proximate waste matter and digester operation pH.


Author(s):  
Mona Fardinpoor ◽  
N. Altınay Perendeci ◽  
Vedat Yılmaz ◽  
Burcu Ertit Taştan ◽  
Fatih Yılmaz

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2303-2313
Author(s):  
Shuangshuang Zhao ◽  
Zhongjian Tian ◽  
Gaojin Lyu ◽  
Dongxing Wang ◽  
Hairui Ji ◽  
...  

Using reed (Phragmites australis (Cav.) Trin. ex Steud) as raw material, straw pulp was prepared by low alkali (less than 6%) pretreatment combined with mechanical grinding. The effects of pretreatment times and alkali dosages on pulp properties and pretreatment solution were investigated. The results demonstrated that alkali pretreatment affected FPI beating efficiency, and the beating energy consumption was lowest when pretreated with alkali dosage of 4%. With 5% NaOH pretreatment, the produced handsheets showed excellent properties that exceeded the requirements of food packaging paper and C-class corrugated paper. Moreover, low silicon content (≤1.12 g/L) in the pretreatment liquor had an almost negligible effect relative to alkali recovery. Therefore, this study is important for researchers and industrial representatives seeking to use reed straw as material for pulping.


2021 ◽  
Vol 21 ◽  
pp. 101324
Author(s):  
Shailja Pant ◽  
Ritika ◽  
Andrea Komesu ◽  
Eduardo Dellosso Penteado ◽  
Anthony Andrey Ramalho Diniz ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 245
Author(s):  
Hyung-Eun An ◽  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Chang-Bae Kim ◽  
Hah Young Yoo

As greenhouse gases and environmental pollution become serious, the demand for alternative energy such as bioethanol has rapidly increased, and a large supply of biomass is required for bioenergy production. Lignocellulosic biomass is the most abundant on the planet and a large part of it, the second-generation biomass, has the advantage of not being a food resource. In this study, Sicyos angulatus, known as an invasive plant (harmful) species, was used as a raw material for bioethanol production. In order to improve enzymatic hydrolysis, S. angulatus was pretreated with different NaOH concentration at 121 °C for 10 min. The optimal NaOH concentration for the pretreatment was determined to be 2% (w/w), and the glucan content (GC) and enzymatic digestibility (ED) were 46.7% and 55.3%, respectively. Through NaOH pretreatment, the GC and ED of S. angulatus were improved by 2.4-fold and 2.5-fold, respectively, compared to the control (untreated S. angulatus). The hydrolysates from S. angulatus were applied to a medium for bioethanol fermentation of Saccharomyces cerevisiae K35. Finally, the maximum ethanol production was found to be 41.3 g based on 1000 g S. angulatus, which was 2.4-fold improved than the control group.


Sign in / Sign up

Export Citation Format

Share Document