Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass

2013 ◽  
Vol 138 ◽  
pp. 79-86 ◽  
Author(s):  
Fabiana Passos ◽  
Joan García ◽  
Ivet Ferrer
2020 ◽  
Vol 54 (14) ◽  
pp. 9095-9105
Author(s):  
Burhan Shamurad ◽  
Neil Gray ◽  
Evangelos Petropoulos ◽  
Jan Dolfing ◽  
Marcos Quintela-Baluja ◽  
...  

Data in Brief ◽  
2021 ◽  
pp. 107323
Author(s):  
Mohamed N.A. Meshref ◽  
Seyed Mohammad Mirsoleimani Azizi ◽  
Wafa Dastyar ◽  
Rasha Maal-Bared ◽  
Bipro Ranjan Dhar

2013 ◽  
Vol 275-277 ◽  
pp. 1662-1665 ◽  
Author(s):  
Qiang Li ◽  
Juan Juan Fei ◽  
Xu Ding Gu ◽  
Geng Sheng Ji ◽  
Yang Liu ◽  
...  

This study aims to establish a natural cellulosic biomass pretreatment process using ionic liquid (IL) for efficient enzymatic hydrolysis and second generation bioethanol. The IL 1-Butyl-3-methylimidazolium Chloride/FeCl3 ([Bmim]Cl/FeCl3) was selected in view of its low temperature pretreatment ability and the potential of accelerating enzymatic hydrolysis, and it could be recyclable. The yield of reducing sugars from sugarcane residue pretreated with this IL at 80 oC for 1 h reached 46.8% after being enzymatically hydrolyzed for 24 h. Sugarcane residue regenerated were hydrolyzed more easily than that treated with water. The fermentability of the hydrolyzates, obtained after enzymatic saccharification of the regenerated sugarcane residue, was transformed into bioethanol using Candida shehatae. This microbe could absorb glucose and xylose efficiently, and the ethanol production was 0.38 g/g glucose within 30 h fermentation. In conclusion, the metal ionic liquid pretreatment in low temperature shows promise as pretreatment solvent for natural biomass.


2011 ◽  
Vol 64 (1) ◽  
pp. 70-76 ◽  
Author(s):  
D. Cysneiros ◽  
A. Thuillier ◽  
R. Villemont ◽  
A. Littlestone ◽  
T. Mahony ◽  
...  

Continuous Stirred Tank Reactors (CSTRs), operated in batch mode, were used to evaluate the feasibility of psychrophilic (low temperature) digestion of perennial rye grass in a long term experiment (150 days) for the first time. The reactors were operated in parallel at 3 different temperatures, 10, 15 and 37 °C. Hydrolysis, acidification and methanogenesis were assessed by VS degradation, by soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) production, and by methane production, respectively. Hydrolysis was the rate-limiting step at all temperatures and the rates and extent of hydrolysis were considerably lower at 15 and 10 °C, than at 37 °C. The total VS degradation was 53%, 34% and 19% at 37, 15 and 10 °C, respectively. Acidification was not affected by temperature and VFA production and consumption was balanced in all cases, except at 10 °C. Methane yields were 0.215 m3 CH4 kg−1 VS−1 added, 0.160 m3 CH4 kg−1 VS−1 added and 0.125 m3 CH4 kg−1 VS−1 added at 37, 15 and 10 °C, respectively. Methanogenesis was not strongly affected at 15 °C but it became rate-limiting at 10 °C. Overall, the solid degradation and methane production performance under psychrophilic conditions was encouraging and greater than previously reported. Considering the non-acclimated, mesophilic nature of the inoculum, there are grounds to believe that low-temperature anaerobic digestion of grass could be feasible if coupled to efficient hydrolysis of the biomass.


2014 ◽  
Vol 34 (11) ◽  
pp. 2098-2103 ◽  
Author(s):  
Fabiana Passos ◽  
Sergi Astals ◽  
Ivet Ferrer

Sign in / Sign up

Export Citation Format

Share Document