Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting

2016 ◽  
Vol 203 ◽  
pp. 11-17 ◽  
Author(s):  
Erping Cui ◽  
Ying Wu ◽  
Yiru Zuo ◽  
Hong Chen
2019 ◽  
Author(s):  
Jinping Wu ◽  
Junjian Li ◽  
Jianwen Chen ◽  
Dale Li ◽  
Hong Zhang ◽  
...  

AbstractLivestock manure is an important way that antibiotic resistance genes (ARGs) can enter the environment, and composting is an effective method for removing ARGs from livestock manure. In this study, different volume ratios of Chinese medicinal herbal residues (CMHRs) were added to laboratory-scale chicken manure composting to evaluate their effects on the behavior of ARGs, mobile genetic elements (MGEs), and the bacterial community. At the end of the composting period, the structure of the microbial community changed. Firmicutes decreased and Bacteroidetes increased. The relative abundance of the 21 ARGs and 5 MGEs detected decreased by varying degrees in the different treatments (except for sulI and intI1). The removal rate of the ARGs increased with the increased addition of CMHRs. The correlations between transferase genes (tnpA and tnpA-02) and ARGs were significant (p < 0.05); therefore, transposon plays an important role in the horizontal gene transfer of ARGs in chicken manure. The results imply that CMHRs would be an effective bulking agent for the removal of ARGs from chicken manure composting.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Cheng ◽  
Yitong Lu ◽  
Yanzhen Song ◽  
Ruifang Zhang ◽  
Xinyan ShangGuan ◽  
...  

The excessive use of antibiotics speeds up the dissemination and aggregation of antibiotic resistance genes (ARGs) in the environment. The ARGs have been regarded as a contaminant of serious environmental threats on a global scale. The constant increase in aquaculture production has led to extensive use of antibiotics as a means to prevent and treat bacterial infections; there is a universal concern about the environmental risk of ARGs in the aquaculture environment. In this study, a survey was conducted to evaluate the abundance and distributions of 10 ARGs, bacterial community, and environmental factors in sediment samples from aquatic farms distributed in Anhui (AP1, AP2, and AP3), Fujian (FP1, FP2, and FP3), Guangxi (GP1, GP2, and GP3), Hainan (HP1, HP2, and HP3), and Shaanxi (SP1, SP2, and SP3) Province in China. The results showed that the relative abundance of total ARGs was higher in AP1, AP2, AP3, FP3, GP3, HP1, HP2, and HP3 than that in FP1, FP2, GP1, GP2, SP1, SP2, and SP3. The sul1 and tetW genes of all sediment samples had the highest abundance. The class 1 integron (intl1) was detected in all samples, and the result of Pearson correlation analysis showed that the intl1 has a positive correlation with the sul1, sul2, sul3, blaOXA, qnrS, tetM, tetQ, and tetW genes. Correlation analysis of the bacterial community diversity and environmental factors showed that the Ca2+ concentration has a negative correlation with richness and diversity of the bacterial community in these samples. Of the identified bacterial community, Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidota were the predominant phyla in these samples. Redundancy analysis showed that environmental factors (TN, TP, Cl–, and Ca2+) have a positive correlation with the bacterial community (AP1, GP1, GP2, GP3, SP1, SP2, and SP3), and the abundance of ARGs (sul1, tetW, qnrS, and intl1) has a positive correlation with the bacterial community (AP2, AP3, HP1, HP2, and HP3). Based on the network analysis, the ARGs (sul1, sul2, blaCMY, blaOXA, qnrS, tetW, tetQ, tetM, and intl1) were found to co-occur with bacterial taxa from the phyla Chloroflexi, Euryarchaeota, Firmicutes, Halobacterota, and Proteobacteria. In conclusion, this study provides an important reference for understanding the environmental risk associated with aquaculture activities in China.


Sign in / Sign up

Export Citation Format

Share Document