scholarly journals A novel high-throughput multi-parameter flow cytometry based method for monitoring and rapid characterization of microbiome dynamics in anaerobic systems

2016 ◽  
Vol 220 ◽  
pp. 566-571 ◽  
Author(s):  
Abhishek S. Dhoble ◽  
Sadia Bekal ◽  
William Dolatowski ◽  
Connor Yanz ◽  
Kris N. Lambert ◽  
...  
Lab on a Chip ◽  
2018 ◽  
Vol 18 (14) ◽  
pp. 2065-2076 ◽  
Author(s):  
Jun-Chau Chien ◽  
Ali Ameri ◽  
Erh-Chia Yeh ◽  
Alison N. Killilea ◽  
Mekhail Anwar ◽  
...  

This work presents a microfluidics-integrated label-free flow cytometry-on-a-CMOS platform for the characterization of the cytoplasm dielectric properties at microwave frequencies.


2019 ◽  
Vol 117 (12) ◽  
pp. 2438-2454 ◽  
Author(s):  
Chon Lok Lei ◽  
Michael Clerx ◽  
David J. Gavaghan ◽  
Liudmila Polonchuk ◽  
Gary R. Mirams ◽  
...  

2009 ◽  
Vol 15 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Zurab Surviladze ◽  
Anna Waller ◽  
Yang Wu ◽  
Elsa Romero ◽  
Bruce S. Edwards ◽  
...  

Small GTPases are key regulators of cellular activity and represent novel targets for the treatment of human diseases using small-molecule inhibitors. The authors describe a multiplex, flow cytometry bead-based assay for the identification and characterization of inhibitors or activators of small GTPases. Six different glutathione-S-transferase (GST)—tagged small GTPases were bound to glutathione beads, each labeled with a different red fluorescence intensity. Subsequently, beads bearing different GTPase were mixed and dispensed into 384-well plates with test compounds, and fluorescent—guanosine triphosphate (GTP) binding was used as the readout. This novel multiplex assay allowed the authors to screen a library of almost 200,000 compounds and identify more than 1200 positive compounds, which were further verified by dose-response analyses, using 6- to 8-plex assays. After the elimination of false-positive and false-negative compounds, several small-molecule families with opposing effects on GTP binding activity were identified. The authors detail the characterization of MLS000532223, a general inhibitor that prevents GTP binding to several GTPases in a dose-dependent manner and is active in biochemical and cell-based secondary assays. Live-cell imaging and confocal microscopy studies revealed the inhibitor-induced actin reorganization and cell morphology changes, characteristic of Rho GTPases inhibition. Thus, high-throughput screening via flow cytometry provides a strategy for identifying novel compounds that are active against small GTPases.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1296
Author(s):  
Jonathan Burnie ◽  
Vera A. Tang ◽  
Joshua A. Welsh ◽  
Arvin T. Persaud ◽  
Laxshaginee Thaya ◽  
...  

The HIV-1 glycoprotein spike (gp120) is typically the first viral antigen that cells encounter before initiating immune responses, and is often the sole target in vaccine designs. Thus, characterizing the presence of cellular antigens on the surfaces of HIV particles may help identify new antiviral targets or impact targeting of gp120. Despite the importance of characterizing proteins on the virion surface, current techniques available for this purpose do not support high-throughput analysis of viruses, and typically only offer a semi-quantitative assessment of virus-associated proteins. Traditional bulk techniques often assess averages of viral preparations, which may mask subtle but important differences in viral subsets. On the other hand, microscopy techniques, which provide detail on individual virions, are difficult to use in a high-throughput manner and have low levels of sensitivity for antigen detection. Flow cytometry is a technique that traditionally has been used for rapid, high-sensitivity characterization of single cells, with limited use in detecting viruses, since the small size of viral particles hinders their detection. Herein, we report the detection and surface antigen characterization of HIV-1 pseudovirus particles by light scattering and fluorescence with flow cytometry, termed flow virometry for its specific application to viruses. We quantified three cellular proteins (integrin α4β7, CD14, and CD162/PSGL-1) in the viral envelope by directly staining virion-containing cell supernatants without the requirement of additional processing steps to distinguish virus particles or specific virus purification techniques. We also show that two antigens can be simultaneously detected on the surface of individual HIV virions, probing for the tetraspanin marker, CD81, in addition to α4β7, CD14, and CD162/PSGL-1. This study demonstrates new advances in calibrated flow virometry as a tool to provide sensitive, high-throughput characterization of the viral envelope in a more efficient, quantitative manner than previously reported techniques.


The Analyst ◽  
2015 ◽  
Vol 140 (12) ◽  
pp. 4277-4283 ◽  
Author(s):  
Gihoon Choi ◽  
Daniel J. Hassett ◽  
Seokheun Choi

In this work, a 48-well, paper-based sensing platform was developed for the high-throughput and rapid characterization of the electricity-producing capability of microbes.


2018 ◽  
Vol 23 (7) ◽  
pp. 613-623 ◽  
Author(s):  
Brian M. Chan ◽  
Anita Badh ◽  
Kelly A. Berry ◽  
Stephanie A. Grauer ◽  
Chadwick T. King

A key step in the therapeutic antibody drug discovery process is early identification of diverse candidate molecules. Information comparing antibody binding epitopes can be used to classify antibodies within a large panel, guiding rational lead molecule selection. We describe a novel epitope binning method utilizing high-throughput flow cytometry (HTFC) that leverages cellular barcoding or spectrally distinct beads to multiplex samples to characterize antibodies raised against cell membrane receptor or soluble protein targets. With no requirement for sample purification or direct labeling, the method is suited for early characterization of antibody candidates. This method generates competitive binding profiles of each antibody against a defined set of known or unknown reference antibodies for binding to epitopes of an antigen. Antibodies with closely related competitive binding profiles indicate similar epitopes and are classified in the same bin. These large, high-throughput, multiplexed experiments can yield epitope bins or clusters for the entire antibody panel, from which a conceptual map of the epitope space for each antibody can be created. Combining this valuable epitope information with other data, such as functional activity, sequence, and selectivity of binding to orthologs and paralogs, enables us to advance the best epitope-diverse candidates for further development.


Small ◽  
2012 ◽  
Vol 8 (24) ◽  
pp. 3746-3751 ◽  
Author(s):  
Stephen Kustra ◽  
Haosheng Wu ◽  
Saurav Basu ◽  
Gustavo K. Rohde ◽  
Christopher J. Bettinger

2017 ◽  
Vol 40 (21) ◽  
pp. 4102-4112 ◽  
Author(s):  
Xianna Li ◽  
Hui Sun ◽  
Aihua Zhang ◽  
Zhidong Liu ◽  
Di Zou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document