scholarly journals Effect of hydraulic retention time on the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system for micropollutants removal from municipal wastewater

2018 ◽  
Vol 247 ◽  
pp. 1228-1232 ◽  
Author(s):  
Qi Jiang ◽  
Hao H. Ngo ◽  
Long D. Nghiem ◽  
Faisal I. Hai ◽  
William E. Price ◽  
...  
2017 ◽  
Vol 77 (3) ◽  
pp. 714-720 ◽  
Author(s):  
J. C. Leyva-Díaz ◽  
A. Rodríguez-Sánchez ◽  
J. González-López ◽  
J. M. Poyatos

Abstract A membrane bioreactor (MBR) and a hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) for municipal wastewater treatment were studied to determine the effect of salinity on nitrogen removal and autotrophic kinetics. The biological systems were analyzed during the start-up phase with a hydraulic retention time (HRT) of 6 h, total biomass concentration of 2,500 mg L−1 in the steady state, and electric conductivities of 1.05 mS cm−1 for MBR and hybrid MBBR-MBR working under regular salinity and conductivity variations of 1.2–6.5 mS cm−1 for MBR and hybrid MBBR-MBR operating at variable salinity. The variable salinity affected the autotrophic biomass, which caused a reduction of the nitrogen degradation rate, an increase of time to remove ammonium from municipal wastewater and longer duration of the start-up phase for the MBR and hybrid MBBR-MBR.


2013 ◽  
Vol 69 (5) ◽  
pp. 1021-1027 ◽  
Author(s):  
W. Yang ◽  
W. Syed ◽  
H. Zhou

This study compared the performance between membrane-coupled moving bed biofilm reactor (M-MBBR) and a conventional membrane bioreactor (MBR) in parallel. Extensive tests were conducted in three pilot-scale experimental units over 6 months. Emphasis was placed on the factors that would affect the performance of membrane filtration. The results showed that the concentrations of soluble microbial product (SMP), colloidal total organic carbon and transparent exopolymer particles in the M-MBBR systems were not significantly different from those in the control MBR system. However, the fouling rates were much higher in the M-MBBR systems as compared to the conventional MBR systems. This indicates membrane fouling potential was related not only to the concentration of SMP, but also to their sources and characteristics. The addition of polyaluminum chloride could reduce the fouling rate of the moving bed biofilm reactor unit by 56.4–84.5% at various membrane fluxes.


2016 ◽  
Vol 208 ◽  
pp. 87-93 ◽  
Author(s):  
Lijuan Deng ◽  
Wenshan Guo ◽  
Huu Hao Ngo ◽  
Xinbo Zhang ◽  
Xiaochang C. Wang ◽  
...  

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Jamal Ali Kawan ◽  
Fatihah Suja’ ◽  
Sagor Kumar Pramanik ◽  
Arij Yusof ◽  
Rakmi Abdul Rahman ◽  
...  

Treated effluent from a wastewater treatment plant can be further reused as a water resource for a water supply treatment plant. In this case, the treated sewage gathered in the study of the Class V National Water Quality Standard (NWQS) of Malaysia would be treated for use as a water resource for a water treatment plant. In a moving bed biofilm reactor (MBBR) with a 500-L working volume, organic pollutants, undesirable nutrients, and bacteria were removed without disinfectant. At 24-h hydraulic retention time (HRT), the maximum removal efficiency of 5-day biological oxygen demand, ammonia–nitrogen (NH3-N), and total phosphorus were 71%, 48%, and 12%, respectively. The biofilm thickness, which was captured using scanning electron microscopy, increased from 102.6 μm (24-h HRT) to 297.1 μm (2-h HRT). A metagenomic analysis using 16S rRNA showed an abundance of anaerobic bacteria, especially from the Proteobacteria phylum, which made up almost 53% of the total microbes. MBBR operated at 24-h HRT could improve effluent quality, as its characteristics fell into Class IIA of the NWQS of Malaysia, with the exception of the NH3-N content, which indicated that the effluent needed conventional treatment prior to being reused as potable water.


1994 ◽  
Vol 29 (12) ◽  
pp. 185-195 ◽  
Author(s):  
Bjørn Rusten ◽  
Jon G. Siljudalen ◽  
Bjørnar Nordeidet

A new moving bed biofilm reactor (MBBR) has been developed in Norway. The biomass is attached to carrier elements that move freely along with the water in the reactor. It has been demonstrated that existing, high loaded, activated sludge plants can easily be upgraded to nitrogen removing MBBR plants. With chemically enhanced mechanical treatment, full scale tests showed that 80-90% total nitrogen could be removed in a MBBR plant at a total empty bed hydraulic retention time (HRT) of 2.6 hours. The plant was operated in the post-denitrification mode, using methanol as an external carbon source.


Sign in / Sign up

Export Citation Format

Share Document