Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis

2018 ◽  
Vol 263 ◽  
pp. 555-561 ◽  
Author(s):  
Xiaoting Li ◽  
Wei Li ◽  
Jun Zhai ◽  
Haoxuan Wei
2018 ◽  
Vol 269 ◽  
pp. 285-291 ◽  
Author(s):  
Ting Zhou ◽  
Jingjing Wang ◽  
Hongli Zheng ◽  
Xiaodan Wu ◽  
Yunpu Wang ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0224294 ◽  
Author(s):  
Maria I. B. Pereira ◽  
Bruna M. E. Chagas ◽  
Roberto Sassi ◽  
Guilherme F. Medeiros ◽  
Emerson M. Aguiar ◽  
...  

Author(s):  
Ronald Tarazona Delgado ◽  
Mayara dos Santos Guarieiro ◽  
Paulo Wagnner Antunes ◽  
Sérvio Túlio Cassini ◽  
Haydee Montoya Terreros ◽  
...  

Author(s):  
Inga Zinicovscaia ◽  
Liliana Cepoi ◽  
Ludmila Rudi ◽  
Tatiana Chiriac ◽  
Dmitrii Grozdov ◽  
...  

2018 ◽  
Vol 33 ◽  
pp. 109-117 ◽  
Author(s):  
Francis J. Fields ◽  
Joseph T. Ostrand ◽  
Stephen P. Mayfield

2012 ◽  
pp. 781-805 ◽  
Author(s):  
João C. M. Carvalho ◽  
Raquel P. Bezerra ◽  
Marcelo C. Matsudo ◽  
Sunao Sato

2015 ◽  
Vol 12 (8) ◽  
pp. 2383-2393 ◽  
Author(s):  
W. Li ◽  
K. Gao ◽  
J. Beardall

Abstract. It has been proposed that ocean acidification (OA) will interact with other environmental factors to influence the overall impact of global change on biological systems. Accordingly we investigated the influence of nitrogen limitation and OA on the physiology of diatoms by growing the diatom Phaeodactylum tricornutum Bohlin under elevated (1000 μatm; high CO2 – HC) or ambient (390 μatm; low CO2 – LC) levels of CO2 with replete (110 μmol L−1; high nitrate – HN) or reduced (10 μmol L−1; low nitrate – LN) levels of NO3- and subjecting the cells to solar radiation with or without UV irradiance to determine their susceptibility to UV radiation (UVR, 280–400 nm). Our results indicate that OA and UVB induced significantly higher inhibition of both the photosynthetic rate and quantum yield under LN than under HN conditions. UVA or/and UVB increased the cells' non-photochemical quenching (NPQ) regardless of the CO2 levels. Under LN and OA conditions, activity of superoxide dismutase and catalase activities were enhanced, along with the highest sensitivity to UVB and the lowest ratio of repair to damage of PSII. HC-grown cells showed a faster recovery rate of yield under HN but not under LN conditions. We conclude therefore that nutrient limitation makes cells more prone to the deleterious effects of UV radiation and that HC conditions (ocean acidification) exacerbate this effect. The finding that nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance of the diatom P. tricornutum implies that ocean primary production and the marine biological C pump will be affected by OA under multiple stressors.


Sign in / Sign up

Export Citation Format

Share Document