Nitrate assimilation, dissimilatory nitrate reduction to ammonium, and denitrification coexist in Pseudomonas putida Y-9 under aerobic conditions

2020 ◽  
Vol 312 ◽  
pp. 123597 ◽  
Author(s):  
Xuejiao Huang ◽  
Christopher G. Weisener ◽  
Jiupai Ni ◽  
Binghui He ◽  
Deti Xie ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Xuejiao Huang ◽  
Wenzhou Tie ◽  
Deti Xie ◽  
Daihua Jiang ◽  
Zhenlun Li

Realizing the smallest nitrogen loss is a challenge in the nitrate reduction process. Dissimilatory nitrate reduction to ammonium (DNRA) and nitrate assimilation play crucial roles in nitrogen retention. In this study, the effects of the carbon source, C/N ratio, pH, and dissolved oxygen on the multiple nitrate reduction pathways conducted by Pseudomonas putida Y-9 are explored. Strain Y-9 efficiently removed nitrate (up to 89.79%) with glucose as the sole carbon source, and the nitrogen loss in this system was 15.43%. The total nitrogen decrease and ammonium accumulation at a C/N ratio of 9 were lower than that at 12 and higher than that at 15, respectively (P < 0.05). Besides, neutral and alkaline conditions (pH 7–9) favored nitrate reduction. Largest nitrate removal (81.78%) and minimum nitrogen loss (10.63%) were observed at pH 7. The nitrate removal and ammonium production efficiencies of strain Y-9 increased due to an increased shaking speed. The expression patterns of nirBD (the gene that controls nitrate assimilation and DNRA) in strain Y-9 were similar to ammonium patterns of the tested incubation conditions. In summary, the following conditions facilitated nitrate assimilation and DNRA by strain Y-9, while reducing the denitrification: glucose as the carbon source, a C/N ratio of 9, a pH of 7, and a shaking speed of 150 rpm. Under these conditions, nitrate removal was substantial, and nitrogen loss from the system was minimal.


2021 ◽  
Vol 9 (7) ◽  
pp. 1524
Author(s):  
Xuejiao Huang ◽  
Wenzhou Tie ◽  
Deti Xie ◽  
Zhenlun Li

The biogeochemical consequences of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) have a significant influence on nitrogen (N) cycling in the ecosystem. Many researchers have explored these two pathways in soil and sediment ecosystems under anaerobic conditions. However, limited information is available regarding the influence of external environmental conditions on these two pathways in a well-defined experimental system under aerobic conditions. In this study, the impacts of the external environmental factors (carbon source, C/N ratio, pH, and dissolved oxygen) on nitrite reduction through the denitrification and DNRA routes in Pseudomonas putida Y-9 were studied. Results found that sodium citrate and sodium acetate favored denitrification and DNRA, respectively. Furthermore, neutral pH and aerobic conditions both facilitated DNRA and denitrification. Especially, low C/N ratios motivated the DNRA while high C/N ratios stimulated the denitrification, which was opposite to the observed phenomena under anaerobic conditions.


2021 ◽  
Vol 206 ◽  
pp. 104815
Author(s):  
Yinghui Jiang ◽  
Guoyu Yin ◽  
Lijun Hou ◽  
Min Liu ◽  
Dengzhou Gao ◽  
...  

1981 ◽  
Vol 8 (6) ◽  
pp. 515 ◽  
Author(s):  
MS Naik ◽  
DJD Nicholas

In wheat leaf discs the evolution of 14CO2 from exogenously supplied 14C-labelled citric acid cycle intermediates was stimulated during the in situ anaerobic reduction of nitrate in the dark. Under these conditions, however, [1,4-14C]succinate was not metabolized. Similarly, when leaves were allowed to assimilate 14CO2 in the dark, thus producing endogenously labelled organic acids, the subsequent evolution of 14CO2 from discs prepared from these leaves was strongly dependent on nitrate reduction. A 1 : 1 stoichiometry between nitrite production and CO2 evolution was recorded during this in situ reduction of nitrate. The in situ reduction of nitrate was inhibited by malonate and D-malate and this effect was reversed by fumarate, probably by generating L-malate within the mitochondria. Mitochondrial NAD-malic enzyme (decarboxylating) (EC 1.1.1.38) was similarly inhibited competitively by malonate and D-malate, but not by succinate. These results indicate that the citric acid cycle dehydrogenases which generate CO2 supply NADH for nitrate reduction in wheat leaves. It is likely that, under anaerobic conditions, nitrate acts as an alternative oxidant to O2 for the NADH generated by the citric acid cycle dehydrogenases resulting in simultaneous evolution of CO2. This ensures that the citric acid cycle operates at the required rate for nitrate assimilation.


2018 ◽  
Vol 94 (10) ◽  
Author(s):  
Peter Stief ◽  
Ann Sofie Birch Lundgaard ◽  
Alexander H Treusch ◽  
Bo Thamdrup ◽  
Hans-Peter Grossart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document