Molecular diversity of liquid digestate from anaerobic digestion plants for biogenic waste

2021 ◽  
pp. 126373
Author(s):  
Pinjing He ◽  
Yulong Huang ◽  
Junjie Qiu ◽  
Hua Zhang ◽  
Liming Shao ◽  
...  
Anaerobe ◽  
2019 ◽  
Vol 59 ◽  
pp. 92-99 ◽  
Author(s):  
Jiachen Sun ◽  
Zifu Li ◽  
Xiaoqin Zhou ◽  
Xuemei Wang ◽  
Ting Liu ◽  
...  

Author(s):  
Shuaixing Xue ◽  
Ling Qiu ◽  
Xiaohui Guo ◽  
Yiqing Yao

Abstract To accelerate the degradation of substrate, 50% liquid digestate recirculation (LDR) was used in the anaerobic digestion (AD) of corn straw. The effects of recirculation on the enzyme activities and biogas production were investigated by comparing with control reactor (ReactorCK). During the AD process, the fermentation system with 50% LDR was more stable. The average biogas and methane production in ReactorLDR were 7,891 mL·d−1 and 347 mL CH4·g−1 VSadded·d−1 respectively. The total volatile fatty acids (TVFAs) concentration in the two reactors both increased at first and then decreased with time. The LDR made the VFAs accumulation significant, especially propionic acid accumulation in 4 ∼ 16 days. The maximum peak value of cellulase, xylanase, dehydrogenase and coenzyme F420 activities in ReactorLDR were 0.51 mg·g−1·h−1, 0.29 mg·g−1·h−1, 4.88 mL·g−1·h−1 and 6.69 μmol·L−1, respectively, which were higher than that in ReactorCK. With or without recirculation, the concentration of TVFAs was positively correlated with cellulase, xylanase and dehydrogenase activities, while was negatively correlated with coenzyme F420 activity. Besides, a very significant correlation existed between hydrolase and dehydrogenase activities and daily biogas production in ReactorCK. And the peaks of cellulase, xylanase and dehydrogenase activities appeared ahead of the peak of daily biogas production with the LDR.


2020 ◽  
Vol 313 ◽  
pp. 123534
Author(s):  
Xinxin Ma ◽  
Miao Yu ◽  
Min Yang ◽  
Shuang Zhang ◽  
Ming Gao ◽  
...  

2018 ◽  
Vol 54 (4B) ◽  
pp. 208 ◽  
Author(s):  
Nguyen Thanh Phong

This study investigated emissions of CH4, N2O and NH3 from nine anaerobic digestion plants that treat biowaste. The treatment is in form of mechanical pre-treatment, anaerobic digestion followed by a composting with or without intensive aeration. The exhaust gases from the mechanical and anaerobic steps are treated by biofilters. The emission sources at the plants consisted of biofilters, combined heat and power units (CHP), liquid digestate treatment systems (LTS) and open composting windrows of the solid digestate. Overall, the emission factors were 0.4 - 16 kg (Mg biowaste)-1 for CH4, 7 - 170 g (Mg biowaste)-1 for N2O and 41 - 6,032 g (Mg biowaste)-1 for NH3. Open composting windrows of solid digestate resulted in high emissions of CH4 and N2O. Intensive aeration of the solid digestate could reduce greenhouse gas emissions.  


2019 ◽  
Vol 11 (9) ◽  
pp. 4933-4940 ◽  
Author(s):  
Przemysław Seruga ◽  
Małgorzata Krzywonos ◽  
Marta Wilk

Abstract Purpose This study aimed to examine the possibilities of the treatment of the by-products generated in the anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW): oxygen stabilization (composting) of the solid digestate and pretreatment with air stripping of the effluents (liquid digestate and leachate from maturation field and reactors from composting). Methods Oxygen stabilization (OS) was performed in full-scale in a mechanical–biological treatment (MBT) plant using three different methods, using an open field or enclosed box reactor with aeration. The ammonia stripping was performed in a pilot-scale installation using effluents from AD (liquid digestate) and OS (leachate from maturation field and reactors). Results The lowest self-heating possibility after the OS was recorded at 28.5 °C, which proves that the most stabilized was the sample after processing with structuring material addition. Due to air stripping, the highest efficiency of ammonium ions removal was noted at the level of 50.6%, with an initial pH value of 10.5, after 12 h. Among the examined factors pH value was found to be significant [the determination coefficient (R2) of 0.93]. Conclusions The oxygen stabilization of the digestate requires the structuring material addition before being placed in the reactor with aeration. The inert fraction from the ballistic separation of the OFMSW can be an interesting solution, as required structuring material. Air stripping as the effluents pre-treatment step can meet the MBT plants expectations. Graphic Abstract


2017 ◽  
Vol 6 (3) ◽  
Author(s):  
Jiri Rusin ◽  
Katerina Chamradova ◽  
Barbora Grycova

AbstractIn this study, we tested the high-solids thermophilic anaerobic digestion of separated cattle slurry solids inoculated by liquid digestate collected from the 1


2021 ◽  
Author(s):  
Guangyin Chen ◽  
Hai-Nan Cao ◽  
Xue-Qian Fan ◽  
Yi-Chen Sun ◽  
Jing Wang ◽  
...  

Abstract This paper aims to evaluate the effects of compaction on the anaerobic biodegradability of straw. In the study, compaction tests were carried out at different applied pressures, i.e., 0 (CK), 277 (T1), 555 (T2), and 1109 Pa (T3), respectively. The changes in physicochemical indicators (i.e., pH, VFA, COD, and DHA) of the liquid digestate were monitored. Factor analysis was adopted to analyze biogas production's main factors in the bath Anaerobic digestion (AD) process. Changes in the surface structures and composition of solid digestate were analyzed. The results showed that the maximum gain in biogas production was 298.35mL·g− 1TS for the T2 reactor, significantly higher than that of CK and T3 reactors. The effect of compaction on the physicochemical index of liquid digestate was not significant during the batch-type AD process. The factor analysis results suggested that the major factors affecting biogas production were influenced by the compaction and varied based on the different stages of digestion. Scanning electron microscopy (SEM) showed that the straw surface was damaged as the compaction increases; however, the degree of damage was not significant. This research concluded that compaction on gas production via changing the environment during the bath AD process and proper compaction could positively affect biogas' yield, while excessive compaction will inhibit gas production.


Sign in / Sign up

Export Citation Format

Share Document