Multi-sensor measurement of O2, CO2 and reheating in triticale silage: An extended approach from aerobic stability to aerobic microbial respiration

2021 ◽  
Vol 207 ◽  
pp. 1-11
Author(s):  
Guilin Shan ◽  
Christian Maack ◽  
Wolfgang Buescher ◽  
Gereon Glenz ◽  
Andreas Milimonka ◽  
...  
2015 ◽  
Vol 76 (S 01) ◽  
Author(s):  
Gervith Soto ◽  
Alejandro Sosa ◽  
Bernardo Diaz ◽  
Angel Gomez ◽  
Martin Garcia

1987 ◽  
Vol 19 (1-2) ◽  
pp. 175-182 ◽  
Author(s):  
Z. Lewandowski ◽  
R. Bakke ◽  
W. G. Characklis

Immobilization of nitrifiers and autotrophic denitrifiers (Thiobacillus denitrificans) within calcium alginate gel was demonstrated. Calcium carbonate reagent was immobilized along with bacteria as the stabilizing agent. Protons released as a result of microbial respiration reacted with calcium carbonate producing calcium ions which internally stabilized the calcium alginate gel. The microbially active gel beads were mechanically stable and active for three months in a continuous flow system without addition of calcium.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 696
Author(s):  
Sanku Dattamudi ◽  
Saoli Chanda ◽  
Leonard J. Scinto

Northeast Shark River Slough (NESS), lying at the northeastern perimeter of Everglades National Park (ENP), Florida, USA, has been subjected to years of hydrologic modifications. Construction of the Tamiami Trail (US 41) in 1928 connected the east and west coasts of SE Florida and essentially created a hydrological barrier to southern sheet flow into ENP. Recently, a series of bridges were constructed to elevate a portion of Tamiami Trail, allow more water to flow under the bridges, and attempt to restore the ecological balance in the NESS and ENP. This project was conducted to determine aspects of soil physiochemistry and microbial dynamics in the NESS. We evaluated microbial respiration and enzyme assays as indicators of nutrient dynamics in NESS soils. Soil cores were collected from sites at certain distances from the inflow (near canal, NC (0–150 m); midway, M (150–600 m); and far from canal, FC (600–1200 m)). Soil slurries were incubated and assayed for CO2 emission and β-glucoside (MUFC) or phosphatase (MUFP) activity in concert with physicochemical analysis. Significantly higher TP contents at NC (2.45 times) and M (1.52 times) sites than FC sites indicated an uneven P distribution downstream from the source canal. The highest soil organic matter content (84%) contents were observed at M sites, which was due to higher vegetation biomass observed at those sites. Consequently, CO2 efflux was greater at M sites (average 2.72 µmoles g dw−1 h−1) than the other two sites. We also found that amendments of glucose increased CO2 efflux from all soils, whereas the addition of phosphorus did not. The results indicate that microbial respiration downstream of inflows in the NESS is not limited by P, but more so by the availability of labile C.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 879
Author(s):  
Seong-Shin Lee ◽  
Jeong-Seok Choi ◽  
Dimas Hand Vidya Paradhipta ◽  
Young-Ho Joo ◽  
Hyuk-Jun Lee ◽  
...  

This research was conducted to determine the effects of selected inoculant on the silage with different wilting times. The ryes were unwilted or wilted for 12 h. Each rye forage was ensiled for 100 d in quadruplicate with commercial inoculant (Lactobacillus plantarum sp.; LPT) or selected inoculant (Lactobacillus brevis 100D8 and Leuconostoc holzapfelii 5H4 at 1:1 ratio; MIX). In vitro dry matter digestibility and in vitro neutral detergent fiber digestibility were highest in the unwilted MIX silages (p < 0.05), and the concentration of ruminal acetate was increased in MIX silages (p < 0.001; 61.4% vs. 60.3%) by the increase of neutral detergent fiber digestibility. The concentration of ruminal ammonia-N was increased in wilted silages (p < 0.001; 34.8% vs. 21.1%). The yeast count was lower in the MIX silages than in the LPT silages (p < 0.05) due to a higher concentration of acetate in MIX silages (p < 0.05). Aerobic stability was highest in the wilted MIX silages (p < 0.05). In conclusion, the MIX inoculation increased aerobic stability and improved fiber digestibility. As a result of the wilting process, ammonia-N in silage decreased but ruminal ammonia-N increased. Notably, the wilted silage with applied mixed inoculant had the highest aerobic stability.


2021 ◽  
Vol 1 ◽  
pp. 111-120
Author(s):  
Nuno Miguel Martins Pacheco ◽  
Anand Vazhapilli Sureshbabu ◽  
Masaru Charles Nürnberger ◽  
Laura Isabel Durán Noy ◽  
Markus Zimmermann

AbstractStart-ups tend to form with a central idea that differentiates them from their competitors in the market. It is crucial for them to efficiently transform the idea into a marketable product. Prototyping helps to iteratively achieve a minimum viable product and plays a crucial role by enabling teams to test their ideas with limited resources early on. However, the prototyping process may have wrong focus leading to a suboptimal allocation of resources. Previously, we proposed role-based prototyping for fuzzy front-end development in small teams. It supports (1) resource allocation, (2) the definition of responsibilities, and (3) structuring the development process with milestones. In recent research this was a promising yet incomplete approach. We extend the previous work by refining the prototyping process by adding a prototyping matrix with two dimensions (purpose and lens), a prototyping cycle (plan, execute, test, reflect, assimilate), and a modified Kanban board (Protoban) for planning, managing, and reflecting cycles. This process, named PETRA was tested with a start-up developing an autonomous trash picking robot. The extended approach supported the team significantly in providing a clear idea of what to do at what time.


Sign in / Sign up

Export Citation Format

Share Document