Fluorescence-based discrimination of vegetative cells of bacillus strains from Escherichia coli and Saccharomyces cerevisiae

2021 ◽  
Vol 209 ◽  
pp. 232-245
Author(s):  
Hien Thi Dieu Truong ◽  
Do Trong Nghia Nguyen ◽  
Wouter Saeys
2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Xuhua Xia

Abstract The optimization of the translational machinery in cells requires the mutual adaptation of codon usage and tRNA concentration, and the adaptation of tRNA concentration to amino acid usage. Two predictions were derived based on a simple deterministic model of translation which assumes that elongation of the peptide chain is rate-limiting. The highest translational efficiency is achieved when the codon recognized by the most abundant tRNA reaches the maximum frequency. For each codon family, the tRNA concentration is optimally adapted to codon usage when the concentration of different tRNA species matches the square-root of the frequency of their corresponding synonymous codons. When tRNA concentration and codon usage are well adapted to each other, the optimal content of all tRNA species carrying the same amino acid should match the square-root of the frequency of the amino acid. These predictions are examined against empirical data from Escherichia coli, Salmonella typhimurium, and Saccharomyces cerevisiae.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 585
Author(s):  
Marie-Louise Heymich ◽  
Laura Nißl ◽  
Dominik Hahn ◽  
Matthias Noll ◽  
Monika Pischetsrieder

The fight against food waste benefits from novel agents inhibiting spoilage. The present study investigated the preservative potential of the antimicrobial peptides Leg1 (RIKTVTSFDLPALRFLKL) and Leg2 (RIKTVTSFDLPALRWLKL) recently identified in chickpea legumin hydrolysates. Checkerboard assays revealed strong additive antimicrobial effects of Leg1/Leg2 with sodium benzoate against Escherichia coli and Bacillus subtilis with fractional inhibitory concentrations of 0.625 and 0.75. Additionally, Leg1/Leg2 displayed antifungal activity with minimum inhibitory concentrations of 500/250 µM against Saccharomyces cerevisiae and 250/125 µM against Zygosaccharomyces bailii. In contrast, no cytotoxic effects were observed against human Caco-2 cells at concentrations below 2000 µM (Leg1) and 1000 µM (Leg2). Particularly Leg2 showed antioxidative activity by radical scavenging and reducing mechanisms (maximally 91.5/86.3% compared to 91.2/94.7% for the control ascorbic acid). The present results demonstrate that Leg1/Leg2 have the potential to be applied as preservatives protecting food and other products against bacterial, fungal and oxidative spoilage.


Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1511-1525 ◽  
Author(s):  
Teresa de los Santos ◽  
Josef Loidl ◽  
Brittany Larkin ◽  
Nancy M Hollingsworth

Abstract The MMS4 gene of Saccharomyces cerevisiae was originally identified due to its sensitivity to MMS in vegetative cells. Subsequent studies have confirmed a role for MMS4 in DNA metabolism of vegetative cells. In addition, mms4 diploids were observed to sporulate poorly. This work demonstrates that the mms4 sporulation defect is due to triggering of the meiotic recombination checkpoint. Genetic, physical, and cytological analyses suggest that MMS4 functions after the single end invasion step of meiotic recombination. In spo13 diploids, red1, but not mek1, is epistatic to mms4 for sporulation and spore viability, suggesting that MMS4 may be required only when homologs are capable of undergoing synapsis. MMS4 and MUS81 are in the same epistasis group for spore viability, consistent with biochemical data that show that the two proteins function in a complex. In contrast, MMS4 functions independently of MSH5 in the production of viable spores. We propose that MMS4 is required for the processing of specific recombination intermediates during meiosis.


Sign in / Sign up

Export Citation Format

Share Document