Investigation of crude oil degradation using metal oxide anode-based microbial fuel cell

2020 ◽  
Vol 11 ◽  
pp. 100449
Author(s):  
Arpita Nandy ◽  
Jagoš R. Radović ◽  
Breda Novotnik ◽  
Mohita Sharma ◽  
Stephen R. Larter ◽  
...  
2021 ◽  
Vol 201 ◽  
pp. 108458
Author(s):  
Konomi Suda ◽  
Masayuki Ikarashi ◽  
Hideyuki Tamaki ◽  
Satoshi Tamazawa ◽  
Susumu Sakata ◽  
...  

2014 ◽  
Vol 164 ◽  
pp. 275-284 ◽  
Author(s):  
Ean Warren ◽  
Natasha J. Sihota ◽  
Frances D. Hostettler ◽  
Barbara A. Bekins

2021 ◽  
Author(s):  
Bobby Chettri ◽  
Ningombam Anjana Singha ◽  
Arvind Kumar Singh

Abstract We report kinetics of Assam crude oil degradation by Pseudomonas aeruginosa AKS1 and Bacillus sp. AKS2, both isolated from Assam refinery sediments. The isolates exhibited appreciable degrees of hydrophobicity, emulsification index and biosurfactant production. Crude oil degradation efficiency of isolates was assessed in (1) liquid medium amended with 1% v/v crude oil and (2) microcosm sediments (125 mg crude oil/ 10 g sand). In liquid culture, the biodegradation rate (k) and half-life (t1/2) values were found to be 0.0383 day -1 and 18.09 days for P. aeruginosa AKS1, and 0.0204 day -1 and 33.97 days in case of Bacillus sp. AKS2. In microcosm sand sediments, the estimated biodegradation rate (k) and half-life (t 1/2) values were 0.0138 day -1 and 50 days for P. aeruginosa AKS1, and 0.0113 day -1 and 61.34 days in case of Bacillus sp. AKS2. The level of nutrient treatment in microcosm sand sediment was 125 µg N & 62.5 µg P/g sediment in case of P. aeruginosa AKS1 and 375 µg N & 37.5 µg P/g sediment in case of Bacillus sp. AKS2. In microcosms without inorganic nutrients, biodegradation rate (k) and half-life (t1/2) values were found to be 0.0069 day -1 and 100 days for P. aeruginosa AKS1 and for Bacillus sp. AKS2, the respective values were found to be 0.0046 day -1 and 150.68 days. Our data provides important information for predictive hydrocarbon degradation in liquid medium and contaminated sediments.


2016 ◽  
Vol 216 ◽  
pp. 548-558 ◽  
Author(s):  
Bobby Chettri ◽  
Arghya Mukherjee ◽  
James S. Langpoklakpam ◽  
Dhrubajyoti Chattopadhyay ◽  
Arvind K. Singh

2018 ◽  
Vol 763 ◽  
pp. 349-354 ◽  
Author(s):  
Xiaopeng Cheng ◽  
Yonghe Li ◽  
Huifeng Shi ◽  
Junxia Lu ◽  
Yuefei Zhang

2019 ◽  
Vol 43 (32) ◽  
pp. 12555-12562 ◽  
Author(s):  
Xiaofei Yang ◽  
Huimin Zhang ◽  
Hai Ming ◽  
Jingyi Qiu ◽  
Gaoping Cao ◽  
...  

The aqueous binder effects of poly(acrylic acid) and carboxy methylated cellulose on metal (oxide) anode performance in lithium-ion batteries were studied.


Sign in / Sign up

Export Citation Format

Share Document