Design and synthesis of membrane fusion inhibitors against the feline immunodeficiency virus

2009 ◽  
Vol 17 (14) ◽  
pp. 4916-4920 ◽  
Author(s):  
Shinya Oishi ◽  
Yasuyo Kodera ◽  
Hiroki Nishikawa ◽  
Hirotaka Kamitani ◽  
Tsuyoshi Watabe ◽  
...  
2009 ◽  
Vol 136 (1-2) ◽  
pp. 155-159 ◽  
Author(s):  
Fuminori Mizukoshi ◽  
Kenji Baba ◽  
Yuko Goto ◽  
Asuka Setoguchi ◽  
Yasuhito Fujino ◽  
...  

2020 ◽  
Vol 94 (15) ◽  
Author(s):  
Danwei Yu ◽  
Jing Xue ◽  
Huamian Wei ◽  
Zhe Cong ◽  
Ting Chen ◽  
...  

ABSTRACT We recently reported a group of lipopeptide-based membrane fusion inhibitors with potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). In this study, the in vivo therapeutic efficacy of such a lipopeptide, LP-52, was evaluated in rhesus macaques chronically infected with pathogenic SIVmac239. In a pilot study with one monkey, monotherapy with low-dose LP-52 rapidly reduced the plasma viral loads to below the limit of detection and maintained viral suppression during three rounds of structurally interrupted treatment. The therapeutic efficacy of LP-52 was further verified in four infected monkeys; however, three out of the monkeys had viral rebounds under the LP-52 therapy. We next focused on characterizing SIV mutants responsible for the in vivo resistance. Sequence analyses revealed that a V562A or V562M mutation in the N-terminal heptad repeat (NHR) and a E657G mutation in the C-terminal heptad repeat (CHR) of SIV gp41 conferred high resistance to LP-52 and cross-resistance to the peptide drug T20 and two newly designed lipopeptides (LP-80 and LP-83). Moreover, we showed that the resistance mutations greatly reduced the stability of diverse fusion inhibitors with the NHR site, and V562A or V562M in combination with E657G could significantly impair the functionality of viral envelopes (Envs) to mediate SIVmac239 infection and decrease the thermostability of viral six-helical bundle (6-HB) core structure. In conclusion, the present data have not only facilitated the development of novel anti-HIV drugs that target the membrane fusion step, but also help our understanding of the mechanism of viral evolution to develop drug resistance. IMPORTANCE The anti-HIV peptide drug T20 (enfuvirtide) is the only membrane fusion inhibitor available for treatment of viral infection; however, it exhibits relatively weak antiviral activity, short half-life, and a low genetic barrier to inducing drug resistance. Design of lipopeptide-based fusion inhibitors with extremely potent and broad antiviral activities against divergent HIV-1, HIV-2, and SIV isolates have provided drug candidates for clinical development. Here, we have verified a high therapeutic efficacy for the lipopeptide LP-52 in SIVmac239-infected rhesus monkeys. The resistance mutations selected in vivo have also been characterized, providing insights into the mechanism of action of newly designed fusion inhibitors with a membrane-anchoring property. For the first time, the data show that HIV-1 and SIV can share a similar genetic pathway to develop resistance, and that a lipopeptide fusion inhibitor could have a same resistance profile as its template peptide.


ChemBioChem ◽  
2006 ◽  
Vol 7 (5) ◽  
pp. 774-779 ◽  
Author(s):  
Anna Maria D'Ursi ◽  
Simone Giannecchini ◽  
Cinzia Esposito ◽  
Maria Claudia Alcaro ◽  
Olimpia Sichi ◽  
...  

2005 ◽  
Vol 389 (2) ◽  
pp. 559-567 ◽  
Author(s):  
Florestan Desmaris ◽  
David Lemaire ◽  
Sylvie Ricard-Blum ◽  
Benoît Chatrenet ◽  
Eric Forest

In the fight against the human HIV, new targets are being explored, such as the proteins involved in the process of fusion of the virus with the host cell. Recently, the first generation of fusion inhibitors (enfuvirtide), targeting gp41 (virus envelope glycoprotein 41), has become commercially available. However, this promising class of drugs has to be improved in respect of their efficacy and bioavailability. Considering the strong homologies between HIV and FIV (feline immunodeficiency virus), as well as the highly conserved structure of the transmembrane envelope protein among species, FIV represents a relevant model of pre-screening studies for HIV. Taking into account (i) sequence homologies between the ectodomain of HIV gp41 and FIV gp36 (envelope glycoprotein 36), (ii) structural data available for gp41 and (iii) the fact that synthetic peptides derived from gp36 are effective inhibitors of FIV infection, we designed several peptides derived from gp36 sequence. We checked that these peptides had the same structural features as the corresponding peptides from gp41 HIV by CD, analytical ultracentrifugation and 1H–2H (hydrogen–deuterium) exchange combined with MS. By combining this latter technique with surface-plasmon-resonance assays, we identified the amino acid residues of the C-terminal region of the ectodomain of gp36 that are critical for interaction with the N-terminal region. This gave clues for therapy and vaccines against FIV, thus providing helpful data for treatments against HIV.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 735
Author(s):  
Tianshu Xiao ◽  
Yongfei Cai ◽  
Bing Chen

HIV-1 (human immunodeficiency virus type 1) infection begins with the attachment of the virion to a host cell by its envelope glycoprotein (Env), which subsequently induces fusion of viral and cell membranes to allow viral entry. Upon binding to primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4), Env undergoes large conformational changes and unleashes its fusogenic potential to drive the membrane fusion. The structural biology of HIV-1 Env and its complexes with the cellular receptors not only has advanced our knowledge of the molecular mechanism of how HIV-1 enters the host cells but also provided a structural basis for the rational design of fusion inhibitors as potential antiviral therapeutics. In this review, we summarize our latest understanding of the HIV-1 membrane fusion process and discuss related therapeutic strategies to block viral entry.


2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Huihui Chong ◽  
Yuanmei Zhu ◽  
Danwei Yu ◽  
Yuxian He

ABSTRACTT-20 (enfuvirtide) is the only membrane fusion inhibitor available for the treatment of viral infection; however, it has low anti-human immunodeficiency virus (anti-HIV) activity and a low genetic barrier for drug resistance. We recently reported that T-20 sequence-based lipopeptides possess extremely potentin vitroandin vivoefficacies (X. Ding, Z. Zhang, H. Chong, Y. Zhu, H. Wei, X. Wu, J. He, X. Wang, Y. He, 2017, J Virol 91:e00831-17, https://doi.org/10.1128/JVI.00831-17; H. Chong, J. Xue, Y. Zhu, Z. Cong, T. Chen, Y. Guo, Q. Wei, Y. Zhou, C. Qin, Y. He, 2018, J Virol 92:e00775-18, https://doi.org/10.1128/JVI.00775-18). Here, we focused on characterizing the structure-activity relationships of the T-20 derivatives. First, a novel lipopeptide termed LP-52 was generated with improved target-binding stability and anti-HIV activity. Second, a large panel of truncated lipopeptides was characterized, revealing a 21-amino-acid sequence core structure. Third, it was surprisingly found that the addition of the gp41 pocket-binding residues in the N terminus of the new inhibitors resulted in increased binding but decreased antiviral activities. Fourth, while LP-52 showed the most potent activity in inhibiting divergent HIV-1 subtypes, its truncated versions, such as LP-55 (25-mer) and LP-65 (24-mer), still maintained their potencies at very low picomolar concentrations; however, both the N- and C-terminal motifs of LP-52 played crucial roles in the inhibition of T-20-resistant HIV-1 mutants, HIV-2, and simian immunodeficiency virus (SIV) isolates. Fifth, we verified that LP-52 can bind to target cell membranes and human serum albumin and has low cytotoxicity and a high genetic barrier to inducing drug resistance.IMPORTANCEDevelopment of novel membrane fusion inhibitors against HIV and other enveloped viruses is highly important in terms of the peptide drug T-20, which remains the only one for clinical use, even if it is limited by large dosages and resistance. Here, we report a novel T-20 sequence-based lipopeptide showing extremely potent and broad activities against HIV-1, HIV-2, SIV, and T-20-resistant mutants, as well as an extremely high therapeutic selectivity index and genetic resistance barrier. The structure-activity relationship (SAR) of the T-20 derivatives has been comprehensively characterized, revealing a critical sequence core structure and the target sites of viral vulnerability that do not include the gp41 pocket. The results also suggest that membrane-anchored inhibitors possess unique modes of action relative to unconjugated peptides. Combined, our series studies have not only provided drug candidates for clinical development but also offered important tools to elucidate the mechanisms of viral fusion and inhibition.


1994 ◽  
Vol 68 (7) ◽  
pp. 4572-4579 ◽  
Author(s):  
F Baldinotti ◽  
D Matteucci ◽  
P Mazzetti ◽  
C Giannelli ◽  
P Bandecchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document