scholarly journals Small-molecule inhibition of the uPAR·uPA interaction: Synthesis, biochemical, cellular, in vivo pharmacokinetics and efficacy studies in breast cancer metastasis

2013 ◽  
Vol 21 (7) ◽  
pp. 2145-2155 ◽  
Author(s):  
Timmy Mani ◽  
Fang Wang ◽  
William Eric Knabe ◽  
Anthony L. Sinn ◽  
May Khanna ◽  
...  
2014 ◽  
Vol 29 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Motoyoshi Endo ◽  
Yutaka Yamamoto ◽  
Masahiro Nakano ◽  
Tetsuro Masuda ◽  
Haruki Odagiri ◽  
...  

Introduction Breast cancer is a leading cause of cancer-related death in women worldwide, and its metastasis is a major cause of disease mortality. Therefore, identification of the mechanisms underlying breast cancer metastasis is crucial for the development of therapeutic and diagnostic strategies. Our recent study of immunodeficient female mice transplanted with MDA-MB231 breast cancer cells demonstrated that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) accelerates metastasis through both increasing tumor cell migration in an autocrine/paracrine manner, and enhancing tumor angiogenesis. To determine whether ANGPTL2 contributes to its clinical pathogenesis, we asked whether serum ANGPTL2 levels reflect the clinical features of breast cancer progression. Methods We monitored the levels of secreted ANGPTL2 in supernatants of cultured proliferating MDA-MB231 cells. We also determined whether the circulating ANGPTL2 levels were positively correlated with cancer progression in an in vivo breast cancer xenograft model using MDA-MB231 cells. Finally, we investigated whether serum ANGPTL2 levels were associated with clinical features in breast cancer patients. Results Both in vitro and in vivo experiments showed that the levels of ANGPTL2 secreted from breast cancer cells increased with cell proliferation and cancer progression. Serum ANGPTL2 levels in patients with metastatic breast cancer were significantly higher than those in healthy subjects or in patients with ductal carcinoma in situ or non-metastatic invasive ductal carcinoma. Serum ANGPTL2 levels in patients negative for estrogen receptors and progesterone receptors, particularly triple-negative cases, reflected histological grades. Conclusions These findings suggest that serum ANGPTL2 levels in breast cancer patients could represent a potential marker of breast cancer metastasis.


2014 ◽  
Vol 4 (3) ◽  
pp. 304-317 ◽  
Author(s):  
Nirupa Murugaesu ◽  
Marjan Iravani ◽  
Antoinette van Weverwijk ◽  
Aleksandar Ivetic ◽  
Damian A. Johnson ◽  
...  

2011 ◽  
Vol 46 (11) ◽  
pp. 718-725 ◽  
Author(s):  
Dean B. Percy ◽  
Emeline J. Ribot ◽  
Yuhua Chen ◽  
Catherine McFadden ◽  
Carmen Simedrea ◽  
...  

Oncogene ◽  
2020 ◽  
Author(s):  
Ying Song ◽  
Shanshan Zeng ◽  
Guopei Zheng ◽  
Danyang Chen ◽  
Pan Li ◽  
...  

AbstractMetastasis remains the major obstacle to improved survival for breast cancer patients. Downregulation of FOXO3a transcription factor in breast cancer is causally associated with the development of metastasis through poorly understood mechanisms. Here, we report that FOXO3a is functionally related to the inhibition of VEGF-A/NRP1 signaling and to the consequent suppression of breast cancer metastasis. We show that FOXO3a directly induces miR-29b-2 and miR-338 expression. Ectopic expression of miR-29b-2/miR-338 significantly suppresses EMT, migration/invasion, and in vivo metastasis of breast cancer. Moreover, we demonstrate that miR-29b-2 directly targets VEGF-A while miR-338 directly targets NRP1, and show that regulation of miR-29b-2 and miR-338 mediates the ability of FOXO3a to suppress VEGF-A/NRP1 signaling and breast cancer metastasis. Clinically, our results show that the FOXO3a-miR-29b-2/miR-338-VEGF-A/NRP1 axis is dysregulated and plays a critical role in disease progression in breast cancer. Collectively, our findings propose that FOXO3a functions as a metastasis suppressor, and define a novel signaling axis of FOXO3a-miRNA-VEGF-A/NRP1 in breast cancer, which might be potential therapeutic targets for breast cancer.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3345-3345
Author(s):  
Anargyros Xenocostas ◽  
Benjamin D Hedley ◽  
Jenny E Chu ◽  
D. George Ormond ◽  
Michel Beausoleil ◽  
...  

Abstract Abstract 3345 Background: Erythropoietin (EPO) is a key regulator of erythropoiesis, and has been shown to stimulate growth, maintain viability, and promote differentiation of red blood cell precursors. The EPO receptor (EPO-R) is expressed by erythroid cells and by several non-hematopoietic cell types including various neoplastic cells. Erythropoiesis-stimulating agents (ESAs) are used clinically for the treatment of chemotherapy-induced anemia. The results of some recent randomized clinical trials have reported an increased incidence in adverse events and reduced survival in ESA-treated metastatic breast cancer patients receiving chemotherapy, potentially related to EPO-induced cancer progression. These results have raised concerns over ESA treatment in metastatic cancer patients. However, very little pre-clinical data is available regarding the impact of EPO on breast cancer metastasis. The goal of the current study was therefore to determine if EPO can influence the malignant behavior of breast cancer cells and/or influence the metastatic process. Methods: MDA-MB-468, MDA-MB-231, MDA-MB-435, and 4T-1 breast cancer cell lines were treated with recombinant human EPO (rHuEPO; 10 U/ml) or control media and screened for EPO-R mRNA expression levels by RT-PCR, and for EPO-R protein expression by Western blot and flow cytometry. MDA-MB-231 (231) and MDA-MB-435 (435) cell lines were used for functional assays in vitro and in vivo. Untreated or rHuEPO treated cells were grown in 2D and 3D in vitro systems (standard tissue culture plates and 0.6% soft agar, respectively) to determine if rHuEPO influenced growth. In vitro cell survival was also assessed in response to treatment with rHuEPO in the presence or absence of paclitaxel chemotherapy (10mg/ml), radiation (10G), or hypoxic conditions (1% O2). Following mammary fat pad injection, in vivo effects of rHuEPO (300U/kg) alone or in combination with paclitaxel treatment (10mg/kg) were assessed in mouse models of tumorigenicity and spontaneous metastasis. Results: Expression analysis of EPO-R mRNA and protein revealed a large variation in levels across different cell lines. The majority of cell lines did not express cell surface EPO-R by flow cytometry, although two cell lines (231 and 435) did show weak expression of EPO-R mRNA, with only the 231 cell line showing EPO-R expression by Western blot. In vitro, a small protective effect from rHuEPO on radiation-treated 435 cells was seen (p<0.05); however, rHuEPO treatment alone or combined with chemotherapy or hypoxia did not cause a significant increase in cell survival relative to untreated controls cells. In contrast, in vivo studies demonstrated that rHuEPO increased the incidence and burden of lung metastases in immunocompromised mice injected with 231 or 435 cells and treated with paclitaxel relative to mice treated with paclitaxel alone (p<0.05). Conclusions: The lack of an in vitro effect of rHuEPO highlights the importance of in vivo studies to delineate the effects of EPO on the metastatic process. Our novel findings demonstrate that rHuEPO can reduce the efficacy of chemotherapy in the metastatic setting in vivo, and in some cases enhance the inherent metastatic growth potential of human breast cancer cells. This work was supported by funding from the London Regional Cancer Program and Janssen Ortho Canada Disclosures: Xenocostas: Janssen Ortho: Consultancy, Honoraria, Research Funding. Allan:Janssen Ortho: Research Funding.


2012 ◽  
Vol 82 (3) ◽  
pp. 521-528 ◽  
Author(s):  
Nadejda Vintonenko ◽  
Jean-Philippe Jais ◽  
Nadim Kassis ◽  
Mohamed Abdelkarim ◽  
Gerard-Yves Perret ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document