scholarly journals Design, Synthesis, and antiviral activity of a series of CD4-mimetic small-molecule HIV-1 entry inhibitors

2021 ◽  
pp. 116000
Author(s):  
Francesca Curreli ◽  
Shahad Ahmed ◽  
Sofia M. Benedict Victor ◽  
Ildar R. Iusupov ◽  
Evgeny A. Spiridonov ◽  
...  
2016 ◽  
Vol 24 (22) ◽  
pp. 5988-6003 ◽  
Author(s):  
Francesca Curreli ◽  
Dmitry S. Belov ◽  
Ranjith R. Ramesh ◽  
Naisargi Patel ◽  
Andrea Altieri ◽  
...  

2012 ◽  
Vol 55 (9) ◽  
pp. 4382-4396 ◽  
Author(s):  
Judith M. LaLonde ◽  
Young Do Kwon ◽  
David M. Jones ◽  
Alexander W. Sun ◽  
Joel R. Courter ◽  
...  

2012 ◽  
Vol 55 (10) ◽  
pp. 4764-4775 ◽  
Author(s):  
Francesca Curreli ◽  
Spreeha Choudhury ◽  
Ilya Pyatkin ◽  
Victor P. Zagorodnikov ◽  
Anna Khulianova Bulay ◽  
...  

2019 ◽  
Vol 19 (18) ◽  
pp. 1650-1675 ◽  
Author(s):  
Damoder Reddy Motati ◽  
Dilipkumar Uredi ◽  
E. Blake Watkins

Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.


2014 ◽  
Vol 24 (23) ◽  
pp. 5439-5445 ◽  
Author(s):  
Marina Tuyishime ◽  
Matt Danish ◽  
Amy Princiotto ◽  
Marie K. Mankowski ◽  
Rae Lawrence ◽  
...  

2019 ◽  
Author(s):  
Althea Gaffney ◽  
Aakansha Nangarlia ◽  
Steven Gossert ◽  
Adel A. Rashad ◽  
Alamgir Hossain ◽  
...  

The design, synthesis and validation of a family of small molecule “Dual-Action Virucidal EntryInhibitors” (DAVEIs) has been achieved that result in irreversible lytic inactivation of HIV-1 virions. These constructs contained two functional components that endow the capacity to bindsimultaneously to both the gp120 and gp41 subunits of the HIV-1 Envelope glycoprotein (Env). One component is derived from BNM-III-170, a small molecule CD4 mimic warhead that binds togp120. The second component, a Trp3 peptide, is a 9-amino acid segment based on the gp41 Membrane Proximal External Region (MPER) that has been proposed to bind to the gp41 MPERdomain of the Env. The resulting smDAVEIs both inhibit infection with low micromolar potency and induce lysis of the HIV-1 virion. The lytic activity was selective for functional HIV-1 virions. Crucially, virolysis was found to be dependent on covalent tethering of the BNM-III-170 and Trp3 domains with various spacers, as coadministration of the un-crosslinked components proved not to be lytic. Computational modeling supports a mechanism in which DAVEIs bind to open-state Env trimers and induce relative motion of gp120 subunits that further opens the trimers. Overall, this work represents a promising new step toward the use of small-molecule DAVEIs for eradication of HIV.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1581 ◽  
Author(s):  
Megan E. Meuser ◽  
Adel A. Rashad ◽  
Gabriel Ozorowski ◽  
Alexej Dick ◽  
Andrew B. Ward ◽  
...  

Small-molecule HIV-1 entry inhibitors are an extremely attractive therapeutic modality. We have previously demonstrated that the entry inhibitor class can be optimized by using computational means to identify and extend the chemotypes available. Here we demonstrate unique and differential effects of previously published antiviral compounds on the gross structure of the HIV-1 Env complex, with an azabicyclohexane scaffolded inhibitor having a positive effect on glycoprotein thermostability. We demonstrate that modification of the methyltriazole-azaindole headgroup of these entry inhibitors directly effects the potency of the compounds, and substitution of the methyltriazole with an amine-oxadiazole increases the affinity of the compound 1000-fold over parental by improving the on-rate kinetic parameter. These findings support the continuing exploration of compounds that shift the conformational equilibrium of HIV-1 Env as a novel strategy to improve future inhibitor and vaccine design efforts.


Sign in / Sign up

Export Citation Format

Share Document