Potential therapeutic application of small molecule with sulfonamide for chondrogenic differentiation and articular cartilage repair

2016 ◽  
Vol 26 (20) ◽  
pp. 5098-5102 ◽  
Author(s):  
Eunhyun Choi ◽  
Jiyun Lee ◽  
Seahyoung Lee ◽  
Byeong-Wook Song ◽  
Hyang-Hee Seo ◽  
...  
2021 ◽  
Author(s):  
Jianghong Huang ◽  
Zhiwang Huang ◽  
Yujie Liang ◽  
Weihao Yuan ◽  
Liming Bian ◽  
...  

The hUCB-MSC-laden 3D printed gelatin/HAP scaffold effectively repairs knee cartilage defects in a pig model.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xueqin Gao ◽  
Haizi Cheng ◽  
Hassan Awada ◽  
Ying Tang ◽  
Sarah Amra ◽  
...  

Abstract Background Osteoarthritis and cartilage injury treatment is an unmet clinical need. Therefore, development of new approaches to treat these diseases is critically needed. Previous work in our laboratory has shown that murine muscle-derived stem cells (MDSCs) can efficiently repair articular cartilage in an osteochondral and osteoarthritis model. However, the cartilage repair capacity of human muscle-derived stem cells has not been studied which prompt this study. Method In this study, we tested the in vitro chondrogenesis ability of six populations of human muscle-derived stem cells (hMDSCs), before and after lenti-BMP2/GFP transduction using pellet culture and evaluated chondrogenic differentiation of via histology and Raman spectroscopy. We further compared the in vivo articular cartilage repair of hMDSCs stimulated with BMP2 delivered through coacervate sustain release technology and lenti-viral gene therapy-mediated gene delivery in a monoiodoacetate (MIA)-induced osteoarthritis (OA) model. We used microCT and histology to evaluate the cartilage repair. Results We observed that all hMDSCs were able to undergo chondrogenic differentiation in vitro. As expected, lenti-BMP2/GFP transduction further enhanced the chondrogenic differentiation capacities of hMDSCs, as confirmed by Alcian blue and Col2A1staining as well as Raman spectroscopy analysis. We observed through micro-CT scanning, Col2A1 staining, and histological analyses that delivery of BMP2 with coacervate could achieve a similar articular cartilage repair to that mediated by hMDSC-LBMP2/GFP. We also found that the addition of soluble fms-like tyrosine kinase-1 (sFLT-1) protein further improved the regenerative potential of hMDSCs/BMP2 delivered through the coacervate sustain release technology. Donor cells did not primarily contribute to the repaired articular cartilage since most of the repair cells are host derived as indicated by GFP staining. Conclusions We conclude that the delivery of hMDSCs and BMP2 with the coacervate technology can achieve a similar cartilage repair relative to lenti-BMP2/GFP-mediated gene therapy. The use of coacervate technology to deliver BMP2/sFLT1 with hMDSCs for cartilage repair holds promise for possible clinical translation into an effective treatment modality for osteoarthritis and traumatic cartilage injury.


2007 ◽  
pp. 283-309 ◽  
Author(s):  
Monika Volesky ◽  
Timothy Charlton ◽  
Jonathan T. Deland

2002 ◽  
pp. 249-262 ◽  
Author(s):  
Mislav Jelic ◽  
Marko Pecina ◽  
Miroslav Haspl ◽  
Anton Brkic ◽  
Slobodan Vukicevic

2020 ◽  
Vol 8 (3) ◽  
pp. 232596712090552 ◽  
Author(s):  
Puwapong Nimkingratana ◽  
Mats Brittberg

Background: The process of returning to work after cartilage treatment has not been studied in depth, even though a better understanding of potential outcomes could lead to significant benefits for the general population. Purpose: To determine which surgical interventions are most effective in helping patients return to work after cartilage repair and to identify factors that affect the ability to return to work. Study Design: Systematic review; Level of evidence, 4. Methods: This systematic review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines in analyzing reports on articular cartilage treatment and return to work published from January 1966 (when the first system of classifying articular cartilage injuries based on the mechanism of injuries and type of lesions was developed) to January 2019. General surgical information and available clinical scores were used to assess outcomes. Results: Only 5 studies describing 283 patients were found to be relevant to our objectives and were therefore included in the analysis. Autologous chondrocyte implantation (ACI) and osteochondral allografts were the only 2 procedures for which information was included regarding patient return to work rates. The mean (overall) return-to-work time after a cartilage repair operation was 4.80 ± 3.02 months. ACI was the most common procedure (3 studies; 227 patients). Return to work after ACI or ACI with high tibial osteotomy (HTO) occurred in almost 100% of cases, whereas the rate of return to work was 51.78% for patients who underwent osteochondral allograft ( P < .01); further, patients who had ACI or ACI+HTO returned to work sooner compared with patients who underwent osteochondral allograft. The Knee injury and Osteoarthritis Outcome Score (KOOS) and Single Assessment Numerical Evaluation (SANE) scores were significantly higher in patients who fully returned to work. No significant difference was found in rates of return to work after ACI related to sex, area of the lesion, or size of the defect. Conclusion: The vast majority of published results on articular cartilage repair do not include data on return to work. Although available data on articular cartilage repair in the general population reveal a high rate of return to work, including those patients treated with ACI, the data do not stratify patients by the type and demand of work. No randomized studies have examined return-to-work rates. Hence, authors should include these data in future studies. A refined definition of work intensity, rather than just return to work, may provide a clearer picture of the relative effectiveness of different surgical interventions. To that end, the authors propose a return to work prognostic score called the Prognostic Cartilage Repair Return to Work Score, or PROCART-RTW score.


Sign in / Sign up

Export Citation Format

Share Document