Controlled Gene Delivery Systems for Articular Cartilage Repair

Author(s):  
Magali Cucchiarini ◽  
Ana Rey-Rico
2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Caining Wen ◽  
Limei Xu ◽  
Xiao Xu ◽  
Daping Wang ◽  
Yujie Liang ◽  
...  

AbstractArticular cartilage repair is a critical issue in osteoarthritis (OA) treatment. The insulin-like growth factor (IGF) signaling pathway has been implicated in articular cartilage repair. IGF-1 is a member of a family of growth factors that are structurally closely related to pro-insulin and can promote chondrocyte proliferation, enhance matrix production, and inhibit chondrocyte apoptosis. Here, we reviewed the role of IGF-1 in cartilage anabolism and catabolism. Moreover, we discussed the potential role of IGF-1 in OA treatment. Of note, we summarized the recent progress on IGF delivery systems. Optimization of IGF delivery systems will facilitate treatment application in cartilage repair and improve OA treatment efficacy.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ana Rey-Rico ◽  
Henning Madry ◽  
Magali Cucchiarini

Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair.


2007 ◽  
pp. 283-309 ◽  
Author(s):  
Monika Volesky ◽  
Timothy Charlton ◽  
Jonathan T. Deland

2002 ◽  
pp. 249-262 ◽  
Author(s):  
Mislav Jelic ◽  
Marko Pecina ◽  
Miroslav Haspl ◽  
Anton Brkic ◽  
Slobodan Vukicevic

2020 ◽  
Vol 8 (3) ◽  
pp. 232596712090552 ◽  
Author(s):  
Puwapong Nimkingratana ◽  
Mats Brittberg

Background: The process of returning to work after cartilage treatment has not been studied in depth, even though a better understanding of potential outcomes could lead to significant benefits for the general population. Purpose: To determine which surgical interventions are most effective in helping patients return to work after cartilage repair and to identify factors that affect the ability to return to work. Study Design: Systematic review; Level of evidence, 4. Methods: This systematic review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines in analyzing reports on articular cartilage treatment and return to work published from January 1966 (when the first system of classifying articular cartilage injuries based on the mechanism of injuries and type of lesions was developed) to January 2019. General surgical information and available clinical scores were used to assess outcomes. Results: Only 5 studies describing 283 patients were found to be relevant to our objectives and were therefore included in the analysis. Autologous chondrocyte implantation (ACI) and osteochondral allografts were the only 2 procedures for which information was included regarding patient return to work rates. The mean (overall) return-to-work time after a cartilage repair operation was 4.80 ± 3.02 months. ACI was the most common procedure (3 studies; 227 patients). Return to work after ACI or ACI with high tibial osteotomy (HTO) occurred in almost 100% of cases, whereas the rate of return to work was 51.78% for patients who underwent osteochondral allograft ( P < .01); further, patients who had ACI or ACI+HTO returned to work sooner compared with patients who underwent osteochondral allograft. The Knee injury and Osteoarthritis Outcome Score (KOOS) and Single Assessment Numerical Evaluation (SANE) scores were significantly higher in patients who fully returned to work. No significant difference was found in rates of return to work after ACI related to sex, area of the lesion, or size of the defect. Conclusion: The vast majority of published results on articular cartilage repair do not include data on return to work. Although available data on articular cartilage repair in the general population reveal a high rate of return to work, including those patients treated with ACI, the data do not stratify patients by the type and demand of work. No randomized studies have examined return-to-work rates. Hence, authors should include these data in future studies. A refined definition of work intensity, rather than just return to work, may provide a clearer picture of the relative effectiveness of different surgical interventions. To that end, the authors propose a return to work prognostic score called the Prognostic Cartilage Repair Return to Work Score, or PROCART-RTW score.


Sign in / Sign up

Export Citation Format

Share Document