scholarly journals A comparison of BMP2 delivery by coacervate and gene therapy for promoting human muscle-derived stem cell-mediated articular cartilage repair

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xueqin Gao ◽  
Haizi Cheng ◽  
Hassan Awada ◽  
Ying Tang ◽  
Sarah Amra ◽  
...  

Abstract Background Osteoarthritis and cartilage injury treatment is an unmet clinical need. Therefore, development of new approaches to treat these diseases is critically needed. Previous work in our laboratory has shown that murine muscle-derived stem cells (MDSCs) can efficiently repair articular cartilage in an osteochondral and osteoarthritis model. However, the cartilage repair capacity of human muscle-derived stem cells has not been studied which prompt this study. Method In this study, we tested the in vitro chondrogenesis ability of six populations of human muscle-derived stem cells (hMDSCs), before and after lenti-BMP2/GFP transduction using pellet culture and evaluated chondrogenic differentiation of via histology and Raman spectroscopy. We further compared the in vivo articular cartilage repair of hMDSCs stimulated with BMP2 delivered through coacervate sustain release technology and lenti-viral gene therapy-mediated gene delivery in a monoiodoacetate (MIA)-induced osteoarthritis (OA) model. We used microCT and histology to evaluate the cartilage repair. Results We observed that all hMDSCs were able to undergo chondrogenic differentiation in vitro. As expected, lenti-BMP2/GFP transduction further enhanced the chondrogenic differentiation capacities of hMDSCs, as confirmed by Alcian blue and Col2A1staining as well as Raman spectroscopy analysis. We observed through micro-CT scanning, Col2A1 staining, and histological analyses that delivery of BMP2 with coacervate could achieve a similar articular cartilage repair to that mediated by hMDSC-LBMP2/GFP. We also found that the addition of soluble fms-like tyrosine kinase-1 (sFLT-1) protein further improved the regenerative potential of hMDSCs/BMP2 delivered through the coacervate sustain release technology. Donor cells did not primarily contribute to the repaired articular cartilage since most of the repair cells are host derived as indicated by GFP staining. Conclusions We conclude that the delivery of hMDSCs and BMP2 with the coacervate technology can achieve a similar cartilage repair relative to lenti-BMP2/GFP-mediated gene therapy. The use of coacervate technology to deliver BMP2/sFLT1 with hMDSCs for cartilage repair holds promise for possible clinical translation into an effective treatment modality for osteoarthritis and traumatic cartilage injury.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Junjun Shi ◽  
Xin Zhang ◽  
Yanbin Pi ◽  
Jingxian Zhu ◽  
Chunyan Zhou ◽  
...  

The clinical application of viral vectors for gene therapy is limited for biosafety consideration. In this study, to promote articular cartilage repair, poly (lactic-co glycolic acid) (PLGA) nanopolymers were used as non-viral vectors to transfect rabbit mesenchymal stem cells (MSCs) with the pDC316-BMP4-EGFP plasmid. The cytotoxicity and transfection efficiency in vitro were acceptable measuring by CCK-8 and flow cytometry. After transfection, Chondrogenic markers (mRNA of Col2a1, Sox9, Bmp4, and Agg) of experimental cells (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers) were increased more than those of control cells (MSCs being transfected with naked BMP-4 plasmid alone). In vivo study, twelve rabbits (24 knees) with large full thickness articular cartilage defects were randomly divided into the experimental group (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers) and the control group (MSCs being transfected with naked BMP-4 plasmid). The experimental group showed better regeneration than the control group 6 and 12 weeks postoperatively. Hyaline-like cartilage formed at week 12 in the experimental group, indicating the local delivery of BMP-4 plasmid to MSCs by PLGA nanopolymers improved articular cartilage repair significantly. PLGA nanopolymers could be a promising and effective non-viral vector for gene therapy in cartilage repair.


Cartilage ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 439-443 ◽  
Author(s):  
Mariana Lazarini ◽  
Pedro Bordeaux-Rego ◽  
Renata Giardini-Rosa ◽  
Adriana S. S. Duarte ◽  
Mariana Ozello Baratti ◽  
...  

Objective Articular cartilage is an avascular tissue with limited ability of self-regeneration and the current clinical treatments have restricted capacity to restore damages induced by trauma or diseases. Therefore, new techniques are being tested for cartilage repair, using scaffolds and/or stem cells. Although type II collagen hydrogel, fibrin sealant, and adipose-derived stem cells (ASCs) represent suitable alternatives for cartilage formation, their combination has not yet been investigated in vivo for focal articular cartilage defects. We performed a simple experimental procedure using the combination of these 3 compounds on cartilage lesions of rabbit knees. Design The hydrogel was developed in house and was first tested in vitro for chondrogenic differentiation. Next, implants were performed in chondral defects with or without ASCs and the degree of regeneration was macroscopically and microscopically evaluated. Results Production of proteoglycans and the increased expression of collagen type II (COL2α1), aggrecan (ACAN), and sex-determining region Y-box 9 (SOX9) confirmed the chondrogenic character of ASCs in the hydrogel in vitro. Importantly, the addition of ASC induced a higher overall repair of the chondral lesions and a better cellular organization and collagen fiber alignment compared with the same treatment without ASCs. This regenerating tissue also presented the expression of cartilage glycosaminoglycan and type II collagen. Conclusions Our results indicate that the combination of the 3 compounds is effective for articular cartilage repair and may be of future clinical interest.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Zayed ◽  
Steven Newby ◽  
Nabil Misk ◽  
Robert Donnell ◽  
Madhu Dhar

Horses are widely used as large animal preclinical models for cartilage repair studies, and hence, there is an interest in using equine synovial fluid-derived mesenchymal stem cells (SFMSCs) in research and clinical applications. Since, we have previously reported that similar to bone marrow-derived MSCs (BMMSCs), SFMSCs may also exhibit donor-to-donor variations in their stem cell properties; the current study was carried out as a proof-of-concept study, to compare the in vivo potential of equine BMMSCs and SFMSCs in articular cartilage repair. MSCs from these two sources were isolated from the same equine donor. In vitro analyses confirmed a significant increase in COMP expression in SFMSCs at day 14. The cells were then encapsulated in neutral agarose scaffold constructs and were implanted into two mm diameter full-thickness articular cartilage defect in trochlear grooves of the rat femur. MSCs were fluorescently labeled, and one week after treatment, the knee joints were evaluated for the presence of MSCs to the injured site and at 12 weeks were evaluated macroscopically, histologically, and then by immunofluorescence for healing of the defect. The macroscopic and histological evaluations showed better healing of the articular cartilage in the MSCs’ treated knee than in the control. Interestingly, SFMSC-treated knees showed a significantly higher Col II expression, suggesting the presence of hyaline cartilage in the healed defect. Data suggests that equine SFMSCs may be a viable option for treating osteochondral defects; however, their stem cell properties require prior testing before application.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Guillermo Bauza ◽  
Anna Pasto ◽  
Patrick Mcculloch ◽  
David Lintner ◽  
Ava Brozovich ◽  
...  

Abstract Cartilage repair in osteoarthritic patients remains a challenge. Identifying resident or donor stem/progenitor cell populations is crucial for augmenting the low intrinsic repair potential of hyaline cartilage. Furthermore, mediating the interaction between these cells and the local immunogenic environment is thought to be critical for long term repair and regeneration. In this study we propose articular cartilage progenitor/stem cells (CPSC) as a valid alternative to bone marrow-derived mesenchymal stem cells (BMMSC) for cartilage repair strategies after trauma. Similar to BMMSC, CPSC isolated from osteoarthritic patients express stem cell markers and have chondrogenic, osteogenic, and adipogenic differentiation ability. In an in vitro 2D setting, CPSC show higher expression of SPP1 and LEP, markers of osteogenic and adipogenic differentiation, respectively. CPSC also display a higher commitment toward chondrogenesis as demonstrated by a higher expression of ACAN. BMMSC and CPSC were cultured in vitro using a previously established collagen-chondroitin sulfate 3D scaffold. The scaffold mimics the cartilage niche, allowing both cell populations to maintain their stem cell features and improve their immunosuppressive potential, demonstrated by the inhibition of activated PBMC proliferation in a co-culture setting. As a result, this study suggests articular cartilage derived-CPSC can be used as a novel tool for cellular and acellular regenerative medicine approaches for osteoarthritis (OA). In addition, the benefit of utilizing a biomimetic acellular scaffold as an advanced 3D culture system to more accurately mimic the physiological environment is demonstrated.


2016 ◽  
Vol 16 (4) ◽  
pp. 535-557 ◽  
Author(s):  
Dimitris Reissis ◽  
Quen Oak Tang ◽  
Nina Catherine Cooper ◽  
Clare Francesca Carasco ◽  
Zakareya Gamie ◽  
...  

2016 ◽  
Vol 25 (21) ◽  
pp. 1659-1669 ◽  
Author(s):  
Paul Hindle ◽  
James Baily ◽  
Nusrat Khan ◽  
Leela C. Biant ◽  
A Hamish R. Simpson ◽  
...  

2005 ◽  
Vol 28 (2) ◽  
pp. 57-61
Author(s):  
Paola Narducci ◽  
Giovanna Baldini ◽  
Vittorio Grill ◽  
Vanessa Nicolin ◽  
Renato Bareggi ◽  
...  

Cartilage ◽  
2021 ◽  
pp. 194760352110408
Author(s):  
Brian E. Walczak ◽  
Hongli Jiao ◽  
Ming-Song Lee ◽  
Wan-Ju Li

Objectives Functions of mesenchymal stem/stromal cells (MSCs) are affected by patient-dependent factors such as age and health condition. To tackle this problem, we used the cellular reprogramming technique to epigenetically alter human MSCs derived from the synovial fluid of joints with osteoarthritis (OA) to explore the potential of reprogrammed MSCs for repairing articular cartilage. Materials and Methods MSCs isolated from the synovial fluid of three patients’ OA knees (Pa-MSCs) were reprogrammed through overexpression of pluripotency factors and then induced for differentiation to establish reprogrammed MSC (Re-MSC) lines. We compared the in vitro growth characteristics, chondrogenesis for articular cartilage chondrocytes, and immunomodulatory capacity. We also evaluated the capability of Re-MSCs to repair articular cartilage damage in an animal model with spontaneous OA. Results Our results showed that Re-MSCs increased the in vitro proliferative capacity and improved chondrogenic differentiation toward articular cartilage-like chondrocyte phenotypes with increased THBS4 and SIX1 and decreased ALPL and COL10A1, compared to Pa-MSCs. In addition, Re-MSC-derived chondrocytes expressing elevated COL2A and COL2B were more mature than parental cell-derived ones. The enhancement in chondrogenesis of Re-MSC involves the upregulation of sonic hedgehog signaling. Moreover, Re-MSCs improved the repair of articular cartilage in an animal model of spontaneous OA. Conclusions Epigenetic reprogramming promotes MSCs harvested from OA patients to increase phenotypic characteristics and gain robust functions. In addition, Re-MSCs acquire an enhanced potential for articular cartilage repair. Our study here demonstrates that the reprogramming strategy provides a potential solution to the challenge of variation in MSC quality.


Sign in / Sign up

Export Citation Format

Share Document