End of apposition period in bone mass peak and bone remodeling markers

Bone ◽  
2006 ◽  
Vol 38 (5) ◽  
pp. S10
Author(s):  
S.R. Mastaglia ◽  
J.M. Deferrari ◽  
M. Seijo ◽  
S. Zeni ◽  
C. Casco ◽  
...  
2011 ◽  
Vol 209 (2) ◽  
pp. 203-210 ◽  
Author(s):  
Bernardo Nuche-Berenguer ◽  
Daniel Lozano ◽  
Irene Gutiérrez-Rojas ◽  
Paola Moreno ◽  
María L Mariñoso ◽  
...  

Increased fat mass contributes to bone deterioration. Glucagon-like peptide 1 (GLP-1) and its related peptide exendin 1–39 amide (Ex-4), two lipid-lowering peptides, exert osteogenic effects in diabetic states. We examined the actions of 3-day administration of GLP-1 or Ex-4 on bone remodeling markers and on bone mass and structure in hyperlipidic (HL) and hypercaloric rats. Wistar rats on a hyperlipidemic diet for 35 days were subcutaneously administered GLP-1 (0.86 nmol/kg per h), Ex-4 (0.1 nmol/kg per h), or saline (control) by continuous infusion for 3 days. After killing, tibiae were removed for total RNA and protein isolation, as well as femurs and L1–L4 vertebrae for bone mass and quality assessment. Body weight and plasma insulin were unaltered in HL rats, which showed osteopenia (by dual-energy X-ray absorptiometry), associated with hyperglycemia, hypertriglyceridemia, and hypercholesterolemia. GLP-1 or Ex-4 administration decreased the levels of glucose, triglycerides, and total cholesterol in plasma but increased osteocalcin (OC) gene expression and the osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) ratio – at the expense of an augmented OPG – above corresponding control values in the tibia. Each tested peptide similarly reversed the decreased femoral and vertebral bone mass in these rats, whereas the deteriorated trabecular structure in the vertebrae improved associated with normalization of bone remodeling. These findings demonstrate that GLP-1 and Ex-4 are similarly efficient in reversing the bone alterations in this HL rat model, which has proven to be useful for studying the fat–bone relationships.


2001 ◽  
Vol 76 (3) ◽  
pp. 285-291 ◽  
Author(s):  
C Cure-Cure ◽  
P Cure-Ramı́rez ◽  
E Terán ◽  
P López-Jaramillo

2006 ◽  
Vol 9 (3) ◽  
pp. 11-13
Author(s):  
T G Vasil'eva ◽  
O G Maksimova ◽  
E A Kochetkova

We investigated 130 healthy children and adolescences, its dates of dual-energy X-ray absorbtiometry, bone metabolism markers. The formation of bone mass peak, bone's mineralization in healthy children is depending on age, anthropometric status, sex, dietary with uneven activity in the different local of skeleton. The level of bone metabolism markers is depending on period of life, with maximal dates in patient's 12-14 yeas old. The level of osteopenic syndrome in healthy children consist 15,39%.


2001 ◽  
Vol 120 (5) ◽  
pp. A314-A314
Author(s):  
K HADERSLEV ◽  
P JEPPESEN ◽  
B HARTMANN ◽  
J THULESEN ◽  
J GRAFF ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 312-LB
Author(s):  
MOHAMED ABU-FARHA ◽  
PREETHI THOMAS CHERIAN ◽  
IRINA AL KHAIRI ◽  
MOHAMMAD JAMAL ◽  
SULEIMAN AL-SABAH ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 414
Author(s):  
Saja Baraghithy ◽  
Yael Soae ◽  
Dekel Assaf ◽  
Liad Hinden ◽  
Shiran Udi ◽  
...  

The renal proximal tubule cells (RPTCs), well-known for maintaining glucose and mineral homeostasis, play a critical role in the regulation of kidney function and bone remodeling. Deterioration in RPTC function may therefore lead to the development of diabetic kidney disease (DKD) and osteoporosis. Previously, we have shown that the cannabinoid-1 receptor (CB1R) modulates both kidney function as well as bone remodeling and mass via its direct role in RPTCs and bone cells, respectively. Here we employed genetic and pharmacological approaches that target CB1R, and found that its specific nullification in RPTCs preserves bone mass and remodeling both under normo- and hyper-glycemic conditions, and that its chronic blockade prevents the development of diabetes-induced bone loss. These protective effects of negatively targeting CB1R specifically in RPTCs were associated with its ability to modulate erythropoietin (EPO) synthesis, a hormone known to affect bone mass and remodeling. Our findings highlight a novel molecular mechanism by which CB1R in RPTCs remotely regulates skeletal homeostasis via a kidney-to-bone axis that involves EPO.


2021 ◽  
Vol 22 (15) ◽  
pp. 8182
Author(s):  
Yongguang Gao ◽  
Suryaji Patil ◽  
Jingxian Jia

Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document